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Abstract
Decomposing a non-manifold shape into its almost manifold components is a powerful tool for analyzing its complex structure.
Many techniques for decomposing a non-manifold shape are available in the current literature, and provide a structural model,
which exposes its non-manifold singularities, as well as the connectivity of its relevant subcomponents, connected through the
singularities. However, the majority of the decompositions are static, and are not automatically updated, if the corresponding
non-manifold shape is modified by an editing operator. In many cases, the resulting decomposition is recomputed from scratch
without reusing the unchanged portions of the existing decomposition. In this paper, we describe how updating automatically a
specific decomposition of a non-manifold shape. Here, we show that our approach may be useful for adapting many geometry
processing techniques also to non-manifold shapes, where several problems may arise. One of the most promising applications
consists of defining a multiresolution version for the specific structural model of interest, due to its good topological properties.

1. Introduction

Decompositions are a powerful tool for modeling the non-manifold
shapes. Informally, a non-manifold shape is a subset of the Euclide-
an space, such that every neighborhood of at least one point p is
not locally homeomorphic to a sphere, centered at p. The point p
with these properties is a non-manifold singularity. These shapes
are common in the engineering applications [BCMA∗11], but their
efficient manipulation is challenging. Many geometry processing
applications are defined on the manifolds [BKP∗10], and their ex-
tension to the non-manifolds is not trivial.

The digital shapes are often discretized by the cell complexes,
and the topological data structures are the most common tools for
representing the local connectivity of the elementary cells in the
complexes [DFH05,BKP∗10]. However, many of these representa-
tions do not describe the structure of the non-manifold shapes,
and do not expose the non-manifold singularities, except some ex-
ceptions [Can12]. This is an important aspect, since a dimension-
independent algorithm for recognizing the manifold shapes does
not exist, thus this operation is not always computable [Nab96].

In order to overcome these limitations, a non-manifold shape is
decomposed into the collection of its meaningful components, that
are easily distinguished from the remaining portions of the shape.
The most natural decomposition consists of cutting a non-manifold
shape along its non-manifold singularities without modifying its
almost manifold parts. The resulting representation highlights the
subcomponents and their connectivity, and the non-manifold sin-
gularities are exposed explicitly. Broadly speaking, this representa-
tion provides the structural model (or the decomposition) of a non-
manifold shape, and exposes its high-level description in terms of
the subcomponents. Here, several details are abstracted, and the ge-
ometric, the combinatorial, and the semantic aspects are decoupled
in order to be integrated more easily and efficiently.

1.1. Prior and Related Work

In the current literature, many structural models are defined for the
manifold shapes, and are called the segmentations [Sha08]. A mani-
fold shape is decomposed into the collection of its meaningful com-
ponents, called the segments, that are defined by several metrics and
application-dependent criteria.

Our objective consists of cutting a non-manifold shape into the
collection of its manifold components along the non-manifold sin-
gularities without modifying arbitrarily the components. This im-
plies that the structural model of a manifold shape coincides with
the shape itself, since there is no singularity. Instead, a shape is de-
composed into several segments. In any case, it is also possible to
compute the segmentation of a component in the structural model
of a non-manifold shape (recursively).

Our objective is reachable only on the non-manifold 2D shapes
[DFMMP03]. Instead, a non-manifold shape of higher-dimension
is decomposed into several components, that belong to some com-
putable superclasses of the manifolds. Thus, there exists an algo-
rithm for recognizing the components of a given class. At this point,
it is possible either to apply several repairing techniques [ACK13]
on these components in order to obtain a decomposition with the
desidered properties (but for a modified shape), or to consider the
resulting decomposition of the original shape.

Mesh Repairing Applications. The first step of several mesh re-
pairing applications [ACK13] is based on decomposing the non-
manifold shapes into the collection of their subcomponents, con-
nected along the non-manifold singularities. After this step, many
techniques are applied in order to remove the non-manifold singu-
larities, and to merge together several components in order to ob-
tain a manifold shape from both the topological and the geometric
point of view [Att10]. In this context, many techniques are defined
for repairing the 2D and the 3D shapes.
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One of the first approaches is in the context of the Constructive
Solid Geometry, and is based on the Boolean regularized operators
[TR80], that transform a 2D shape into a regular shape (containing
only the 2D parts). In this context, a 2D shape is decomposed into
its manifold subcomponents, not necessarily bidimensional, and
their junctions are non-manifold (by construction). Intuitively, a 2D
shape is the limit sequence of several manifolds, whose distance is
given by the Haussdorf metric [DS92]. Specifically, this decompo-
sition is represented by a hypergraph, such that every node corresp-
onds to a component, and each arc corresponds to the singularities,
shared by several components [FR92].

Similarly, Gueziec, et al. [GTLH98] propose a technique for re-
pairing a non-manifold 2D shape by addressing only its topological
and combinatorial aspects in the cutting and the stitching opera-
tions [Ago05]. The key idea for the cutting update consists of oper-
ating on proper copies of the singularities. A non-manifold shape is
decomposed into several manifold components, and the majority of
their border edges correspond to the original non-manifold edges.
These components are merged pairwise along their border edges
in order to form a new manifold complex (the stitching operation).
No geometric aspect is considered, and the resulting complex may
contain self-intersections, even if is manifold.

Rossignac and Cardoze introduce the MatchMaker algorithm
[RC99], which solves the drawbacks of the Cutting & Stiching op-
erations. They introduce small permutations in the Euclidean coor-
dinates of the vertices in order to avoid the self-intersections and
the unnecessary replications of the vertices. They show that it is
possible to use a compact representation of the shape.

A similar approach is exploited in Attene et al. [AGFF09] for re-
pairing a non-manifold 3D shape. Here, it is not possible to decom-
pose a 3D shape into the collection of its manifold subcomponents
without adding artificial cuts. In fact, the resulting components may
contain some non-manifold singularities, that are fixed by remov-
ing a small portion for the neighborhood of the existing singular-
ities. This operation is possible under several assumptions in both
the combinatorial and the geometric sense.

Combinatorial Stratifications. The mesh repairing techniques
are focused on removing the singularities and other defects from a
shape. Instead, the singularities (if not removed) are the milestones
for defining its structural model. In the current literature, there are
many techniques, that decompose a non-manifold shape into a col-
lection of its components, belonging to several dimension-indepen-
dent and decidable superclasses of the manifolds.

Pesco et al. [PTL04] introduce the Combinatorial Stratification
of the non-manifold 2D shapes, that are decomposed into sev-
eral components, similar to the strata in the Whitney stratification
for the analytic sets [Whi65]. The union of the strata covers the
shape, and their pairwise intersection may be either empty, or com-
mon to both strata. The stratification is always decidable, and its
strata are manifold, like in [GTLH98], but it is not unique. Follow-
ing [DFH05], it is represented by a graph, such that its nodes corre-
spond to the strata, and its arcs correspond to several copies of the
non-manifold singularities. The strata are encoded by independent
data structures, specific for manifold 2D shapes [Can12].

Lopes et al. [LNPT99] extend the Combinatorial Stratification to
the 3D shapes. This stratification is not unique, and is represented

by a graph-based data structure, similar to the 2D case. Every stra-
tum may contain some singularities (as mentioned above), and is
represented by the Incidence Graph [Ede87, Can12].

De Floriani et al. [DFMMP03] decompose a non-manifold shape
of arbitrary dimension and not necessarily embedded in the Eu-
clidean space as the collection of its Initial Quasi-Manifold (IQM-)
components. These latter form the unique IQM-decomposition of a
non-manifold shape. Here, the neighborhood of each vertex in an
IQM-component of dimension k consists of one connected com-
ponent, formed by several cells of dimension up to k. The IQM-
components form a decidable and dimension-independent super-
class of the manifolds. Specifically, they coincide with the 2D man-
ifolds. Otherwise, they may contain non-manifold singularities in
higher-dimension. Hui et al. [HVDF06] propose the Double-Level
Decomposition (DLD) graph-based data structure for represent-
ing the IQM-decomposition of a non-manifold 3D shape, neces-
sarily embedded in the Euclidean space E3, in the same spirit of
the 2D and the 3D Combinatorial Stratifications. Here, the IQM-
components are encoded by independent data structures [PBCF93].

1.2. Our Contribution

Our contribution may be considered as one of the first steps into
the area of the automatic editing of the structural models, specific
for a generic non-manifold shape Γ. In fact, many structural mod-
els are static (once created), and are not designed for being au-
tomatically updated, if the corresponding shape Γ is modified. A
trivial solution consists of applying the update u of interest on Γ,
and to obtain a new shape Γu. At this point, it is sufficient to re-
compute from scratch the decomposition MΓu of the new shape
Γu without considering the existing decomposition MΓ of Γ. In
the remainder of our paper, we indicate this approach as the naive
approach. Here, we assume that it is possible to compute the de-
composition of interest for a non-manifold shape. Thus, the naive
approach is always computable, but it may be inefficient. In fact,
an update u may modifiy only a small portion of Γ, and this means
that only the corresponding components in MΓ (modified by u)
may be updated. Instead, the remaining parts of Γ (not modified by
u) are unchanged. Thus, the corresponding components inMΓ may
be reused inMΓu . The resulting decomposition must be the same
as the decomposition, computed by the naive approach. Hence, it
is important to investigate when this simplification is feasible and
under what constraints it is advantageous. This problem has not a
unique solution, valid for all updates and all decompositions. A so-
lution depends on the specific update and on howMΓ is modified.
In the current literature, there is a large number of the updates (also
known as the editing operators), as shown in [CDF12].

In our paper, we limit our attention to the Manifold-Connected
(MC-) decomposition of a non-manifold shape, initially proposed
by Hui and De Floriani [HDF07] for simplicial 2D and 3D shapes.
Specifically, we extend its definition to the cell shapes of arbitrary
dimension. Its properties are still valid in this extension, and allow
to exploit efficiently our approach. For the sake of simplicity, we
show how our approach is exploited on the MC-decomposition of
a 2D shape, if modified by the Euler operators in [LL01].

The remainder of our paper is organized as follows. Section 2
contains the background notions, that are used in this paper, while
we extend the MC-decomposition in Section 3. In Section 4, we ad-
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dress how the MC-decomposition is manipulated automatically by
the Euler operators on the cell 2-complexes. In Section 5, we show
how these operators are the basis for several geometry processing
applications. In Section 6, we present our experimental results. Fi-
nally, we show the concluding remarks in Section 7.

2. Background Notions

In this section, we briefly propose some background notions. An
interested reader finds more details in [Ago05, DFH05].

Euclidean cells and complexes. A Euclidean k-cell γ, embedded
in the Euclidean space En, is the homeomorphic image of Bk =
{x ∈ Ek.‖x‖ ≤ 1} with 0 ≤ k ≤ n. Here, k = dim(γ) is the dimen-
sion of the cell γ. For instance, a 0-cell is a vertex, a 1-cell is an
edge, and a 2-cell is a polygon with an arbitrary number of ver-
tices. A Euclidean cell d-complex Γ contains several cells of di-
mension up to d (and not necessarily of the same dimension) with
disjoint interiors, such that the boundary B(γ) of every k-cell γ (with
0 < k ≤ d) belongs to the union of the cells in Γ of dimension less
than or equal to (k− 1). The maximum dimension d of its cells is
the dimension of Γ. A d-cell in Γ is a maximal cell. We indicate
the collection of all k-cells in Γ as Γ

k (for 0 ≤ k ≤ d). A m-cell
γ
′ in the d-complex Γ, such that γ

′ ∈ B(γ), for a k-cell γ in Γ (for
0 ≤ m < k ≤ d), is a m-face of γ. All (k− 1)-faces in B(γ) form
the immediate boundary Bi(γ) of γ. Similarly, a m-cell γ

′, such that
γ ∈ B(γ′) (with 0 ≤ k < m ≤ d), is a m-coface of γ. The star St(γ)
contains all m-cofaces of γ, for all k < m. All (k + 1)-cofaces in
St(γ) forms the immediate star of the k-cell γ. A k-cell γ, such
that St(γ) = ∅, is a top k-cell in Γ (with 0 ≤ k ≤ d). We indicate
the collection of all top k-cells in Γ as Γ

k
t . The top cells are not

necessarily maximal cells. A d-complex Γ is pure, if and only if
Γ

d
t ≡ Γ

d 6= ∅, and Γ
k
t = ∅, for all 0≤ k < d. Thus, all top d-cells in

Γ are maximal cells. Instead, a not pure cell d-complex Γ contains
several top cells, that are not maximal cells. Any two cells γ1 and
γ2 (not both vertices) are j-adjacent, if they share a j-face, with
0 ≤ j ≤ min(dim(γ1),dim(γ2)). Specifically, two k-cells γ1 and γ2
(with k 6= 0) are adjacent, if they share a (k−1)-face. Instead, two
adjacent vertices are connected by an edge. The carrier ∆(Γ) of Γ

is the subset of the Euclidean space, which is spanned by the union
of its Euclidean cells. Following [Att10], a digital object O is de-
scribed by the pairO= (Γ,∆(Γ)) in order to separate the geometric
aspects in ∆(Γ) from the connectivity aspects in Γ.

Combinatorial Characterization of Non-Manifolds. It is possi-
ble to characterize a k-cell γ as a (combinatorial) manifold cell in
the d-complex Γ by analyzing its link [DFMMP03]. The Link Lk(γ)
of a k-cell γ consists of all cells, not in St(γ), but belonging to the
boundary of some cells in St(γ). All edges (in red) in Figure 1(a)
belong to the link Lk(e2) for the edge e2. A d-complex is a (combi-
natorial) manifold d-complex, if Lk(v), for each vertex v, is home-
omorphic to the tessellation of either Sd−1 = {x∈ Ed .‖x‖= 1}, or
to Dd−1 = {x ∈ Ed .‖x‖< 1}, as shown in [Ago05]. A vertex v, at
which this condition is violated, like the vertex v in Figure 1(b), is
indicated as a non-manifold singularity, and the d-complex Γ is a
non-manifold d-complex. Intuitively, a k-cell γ in the d-complex Γ

is manifold, if Lk(γ) is homeomorphic to the tessellation of either
Sh or to Dh−1, for any h ≤ d− k− 1. This implies that a (d− 1)-
cell γ is a manifold cell in the d-complex Γ, if St(γ) contains at most
two maximal d-cells, like the edge e2 in Figure 1(a).

The solution to this problem implies to check the existence of a
tessellation for a given h-sphere [Nab96]. This operation is solved
only for h ≤ 4, and is reduced to the Halting Problem for h ≥ 6.
Its solution is still an open problem for h = 5. Hence, this opera-
tion is not always computable for any dimension, and a dimension-
independent algorithm does not exist.

c

c

c
c

(a) (b)

Figure 1: Examples of the link (in red) for (a) the manifold edge e2, and
for (b) the non-manifold vertex v in two cell 2-complexes.

3. Extending the Manifold-Connected (MC-) decomposition

In this section, we extend the MC-decomposition, initially proposed
for the simplicial complexes [HDF07], to the cell d-complexes. A
simplicial d-complex Σ is a cell d-complex Σ, such that its k-cells
(called the k-simplices) are the linear combinations of k+1 affinely
independent vertices, for 0 ≤ k ≤ d. The intersection of two sim-
plices is either empty, or a common simplex in Σ.

The Manifold-Connected (MC-) connectivity. A k-path γ1 �k
γn is a sequence (γi)

n
i=1 of cells in a cell d-complex Γ (with 0≤ k <

d), such that the cells γi and γi+1 share a k-face τi. In the remainder
of this paper, γi ∈ (γ1 �k γn) and τi ∈ (γ1 �k γn) indicate that the
cells γi and τi are traversed by (or belong to) the k-path γ1 �k γn.
A d-complex Γ, such that there is a k-path between any two cells
is a k-connected complex. The cell 2-complex in Figure 1(b) is a
0-connected complex, since it exhibits at least two 0-paths (in red).

The (k−1)-paths, traversing the top k-cells in Γ
k
t (with 1≤ k ≤

d), have a key role in the applications. Specifically, two top k-cells γ

and γ
′ are Manifold-Connected (MC-) adjacent, if they are (k−1)-

adjacent along a common (k− 1)-face τ, and they are the unique
top cells in St(τ). Two k-cells may be multiply MC-adjacent along
more than one immediate face. For instance, the 2-cells c0 and c1
in Figure 2(a) are multiply MC-adjacent along the edges e1, e2, and
e3. The bidirectional arrows indicate two MC-adjacent cells.

Formally, we define the MC-adjacency relation
MC,k−−−→⊆ Γ

k
t ×Γ

k
t

for two top k-cells γ and γ
′, such that γ

MC,k−−−→ γ
′ if:

∃τ ∈ Γ
k−1.

(
τ ∈ Bi(γ)∩Bi(γ′)

)
∧

(
Stt(τ) = {γ,γ′}

)
Specifically, we say that a MC-adjacency occurs along the com-
mon face τ. By construction, the MC-adjacency relation is a reflex-
ive and a symmetric relation, but it is not transitive. For instance,
in Figure 2(b), the 2-cell q1 is MC-adjacent to q0, which is MC-
adjacent to q3, but the 2-cells q1 and q3 are not MC-adjacent. In
any case, they belong to the 1-path (qi)

4
i=0, such that all pairs of the

consecutive 2-cells is MC-adjacent. A path with these properties
is a Manifold-Connected (MC-) path, involving several top k-cells.
Formally, a MC-path γ1 �k

MC γn is a (k− 1)-path (γi)
n
i=1 in the d-

complex Γ (for any 1≤ k≤ d), such that all pairs of the consecutive
top k-cells γi and γi+1 are MC-adjacent. A MC-path is the transitive
closure of the MC-adjacency relation on the top k-cells in Γ.
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(a) (b) (c)

Figure 2: (a) Example of the multiply MC-connected 2-cells c0 and c1. (b) A MC-complex of dimension 2 is defined by the MC-connectivity
relation ∼2

MC on the top 2-cells. (c) The MC-decomposition of a 2-complex into three MC-components (in different colors) along some
non-manifold edges (in red). The bidirectional arrows indicate a MC-adjacency between two top cells.

Let γ be a top k-cell in a cell d-complex Γ (with 1 ≤ k ≤ d).
A Manifold-Connnected (MC-) component Γ

MC
γ of dimension k is

the collection of the top k-cells in Γ, that belong to every MC-path,
traversing the representative cell γ, i.e., all MC-paths of dimension
k in Γ, outgoing from γ. Formally, a MC-component is described by
the MC-connectivity relation∼k

MC⊆ Γ
k
t ×Γ

k
t , which relates a top k-

cell γ with any top k-cell γ
′, reachable through a MC-path, outgoing

from γ. Here, γ∼k
MC γ

′ if:

i) ∃γ
′′ ∈ Γ

MC
γ .γ′ ∈

(
γ �k

MC γ
′′
)

ii) 6 ∃σ ∈ Γ
k
t .(σ 6= γ)∧ (γ′ ∈ Γ

MC
σ )

These conditions ensure that a MC-component (represented by the
top k-cell γ) is uniquely determined, and is the maximal collection
of all top k-cells, reachable from γ by a MC-path, that traverses γ.
These cells are MC-equivalent to γ. It is clear that a top vertex v in
Γ forms an independent MC-component [v].

Lemma 1 Relation ∼k
MC is an equivalence relation, for k ≥ 1.

Proof . By construction, a cell γ is MC-adjacent to itself, thus ∼k
MC

is reflexive. Similarly, two top k-cells are mutually MC-adjacent,
hence, ∼k

MC is also symmetric. Let γ1 �k
MC γ and γ �k

MC γ2 be
two MC-paths in Γ

MC
γ . For each i = 1,2, there exists an immediate

face τi of γ, which is traversed by γ �k
MC γi. This implies that there

exists a top k-cell γ
′
i , such that γ

′
i �

k
MC γi, and γ

′
i

MC,k−−−→ γ along
τi. In other words, for each i = 1,2, a MC-adjacency occurs along
τi, connecting γ and γ

′
i , and there exists a MC-path from γ

′
i to γi.

Thus, there exists a MC-path γ1 �k
MC γ2. This shows that ∼k

MC is
transitive, thus it is an equivalence relation.

This result allows to define the MC-component Γ
MC
γ as the equiv-

alence class [γ] = {γ′ ∈ Γ
k
t .γ ∼k

MC γ
′}, for k ≥ 1. Its representa-

tive top k-cell γ is arbitrarily chosen among the top k-cells, that are
equivalent to γ with respect to the MC-connectivity relation. In the
remainder, we will omit the dimension k in ∼k

MC (if no ambiguity
arises), since k is implicitly determined by the representative cell
of a MC-component. Intuitively, the Lemma 1 shows that the MC-
paths are separated and composed together in order to form the new
MC-paths of interest. This idea is the milestone of our approach, es-
pecially for validating the correctness of the implementations, and
for simplifying the descriptions of the algorithms in Section 4.3.

Manifold-Connected complexes. A pure d-complex Γ, formed by
only one MC-component [γ], is a MC-complex of dimension d. By
definition, the star of every (d − 1)-cell τ contains one or two
top d-cells, i.e., τ is manifold [DFMMP03]. Thus, a manifold d-
complex is also a MC-complex of dimension d. Instead, a MC-

complex is not necessarily manifold, since there may be some non-
manifold p-cells with 0 ≤ p ≤ d− 2 [CDF13]. Thus, the class of
the MC-complexes of dimension d is a superclass of the manifold
d-complexes. These latter are not always computable [Nab96]. In-
stead, the class of the MC-complexes is always decidable for any
dimension, since it is sufficient to compute the transitive closure of
the MC-connectivity relation, as shown in [CDF11].

The Manifold-Connected (MC-) decomposition. The quotient
space Γ/∼d

MC of a pure d-complex Γ forms its Manifold-Connected
(MC-) decompositionMCΓ. The equivalence classes correspond to
the MC-components of Γ. For instance, Figure 2(c) shows the MC-
decomposition of a pure 2-complex into three MC-components (in
different colors).This approach is extended in two steps to a not pu-
re d-complex Γ, containing a sparse distribution of the top k-cells,
for every 0 ≤ k ≤ d. First, the complex Γ is decomposed into the
pure subcomplexes Γ

k
t , formed by all top k-cells in Γ. Then, for

k ≥ 1, the MC-decomposition MCΓk
t

is computed for every Γ
k
t .

The MC-decomposition MCΓ of the d-complex Γ consists of the
top vertices in Γ, and of the union of all quotient spaces Γ/∼k

MC for
every 1≤ k ≤ d. By construction,MCΓ is unique, since every top
k-cell γ belongs to only one Γ

k
t , thus to only one MC-component.

The Characterization of the Non-Manifold Singularities. For
the sake of simplicitly, we say that the MC-component [γ] belongs
to the star St(τ) of any face τ, bounding γ. Thus, the number nMC

τ

of MC-components in St(τ) helps to recognize efficiently the non-
manifold singularities [Can12]. Specifically, if nMC

τ > 2, then τ is
non-manifold, as well as if St(τ) contains several MC-components
of different dimension. Instead, the star of a manifold k-cell con-
tains only two MC-components of dimension k+1. In any case, if
nMC

τ = 1, then τ may be either manifold, or a pinched non-manifold
singularity occurs at τ. In this latter case, face τ does not play a rel-
evant role in the applications, and it can be discarded [BCMA∗11].

Encoding the MC-decomposition. The MC-decompositionMCΓ

of a d-complex Γ is described by the two-level hypergraph GΓ
MC

[CDF13]. The lower level in GΓ
MC contains a topological data struc-

tureMΓ, able to represent the non-manifold complex Γ. The Gen-
eralized Indexed data structure with Adjacencies [CDFW11] is one
of the most compact representations for non-manifolds, as shown
in [Can12]. The majority of the operations is performed in opti-
mal time, and often in constant time, like the recognition of a MC-
adjacency along a face τ, and the retrieval of nMC

τ . Instead, the up-
per level of GΓ

MC contains the MC-components inMCΓ. The layers
of GΓ

MC are independent, and decouple the local connectivity for the
cells in Γ from the structural aspects inMCΓ.
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4. The MC-decomposition and the Editing Operators

In this section, we propose the basic idea of our approach, if applied
on a cell 2-complex, which is modified by the Euler operators, pro-
posed in [LL01]. This is not a restriction, since these operators are
the basis for all possible updates on a cell 2-complex.

4.1. Basic Idea of Our Approach

Following [DFPM97], an update u = (u−,u+), applied on a com-
plex Γ, removes the collection u− of cells from Γ, and replaces
them with the collection u+ of new cells, that are added to Γ/{u−}.
The result is still a complex Γu = Γ/{u−} ∪ {u+} under some
constraints. In this paper, we are interested in computing the MC-
decomposition MCΓu from MCΓ without its complete recompu-
tation (the naive approach). This is done in two steps. First, we
identify what MC-components of MCΓu are not affected (modi-
fied) by u, since they are reused directly inMCΓu . Then, the MC-
components, affected by u, are modified, and saved inMCΓu .

Formally, we say that a MC-component [γ] is affected by the up-
date u = (u−,u+), if at least one top cell γ

′ in [γ] belongs to the ge-
neralized neighborhood σ

h(u−), for any order h [Att10]. Here,
σ

0(u−) contains all top cells in the star of the vertices on the boun-
dary of the cells in u−. If h 6= 0, then σ

h(u−) contains all top cells
in the star of the vertices, bounding the top cells in σ

h−1(u−).
We consider the minimum order h̄, such that [γ] intersects σ

h̄(u−)
in order to have a unique generalized neighborhood to be con-
sidered. In any case, it is not mandatory that all top cells in [γ]

belong to σ
h̄(u−). For instance, σ

0(v0) = {q1,q4} and σ
1(v0) =

{q0,q1,q2,q3,q4} for the vertex v0 in the cell 2-complex in Figure
2(b). This latter is a MC-component, which intersects σ

0(v0), but
q0, q2 and q3 do not belong to σ

0(v0).

4.2. The Euler Operators and the MC-decomposition

Our approach could be applied on a complex of arbitrary dimen-
sion, and not necessarily embedded in the Euclidean space. For the
sake of simplicity, we limit our attention to a generic cell 2-complex
Γ with V vertices, E edges, and F polygons (i.e., the 2-cells). These
latter are bounded by only one 0-connected path of edges. In par-
ticular, the hole loops (or the 1-cycles) play a key role in this con-
text. Formally, the homology theory provides a precise definition
of the 1-cycles [BCMA∗11]. Intuitively, a hole loop is a closed 0-
connected path of edges, such that the star of every edge is either
empty, or contains several 2-cells, that are not bounded by all edges
in the path. In other words, a hole loop encloses a void, and may
become the immediate boundary of a 2-cell. Figure 3 shows a hole
loop, formed by the top edges e, e1, and e3 and by the not top edge
e2. The complex Γ contains L hole loops and R connected com-
ponents. Thus, the MC-decomposition MCΓ may contain several
MC-components of dimension up to 2.

We manipulateMCΓ by using a simplified variant of the Euler
operators in [LL01], satisfying the Euler equation V − E + F =
R−L. In this case, there are five variables V , E, F , R, and L, and
this means that five Euler operators (and their inverse operators)
are needed. In addition, other two Euler operators are added for
the sake of the commodity. Table 1 summarizes the behavior of
these Euler operators in terms of the Make (M) and the Kill (K)
operations, as well as the Split (S) and the Join (J) operations. Any
Euler operators between the horizontal lines are mutually inverse.

Table 1: The Euler operators in [LL01] are applied on a cell 2-complex
with V vertices, E edges, F 2-cells, R regions, and L hole loops.

V E F R L
Make-Vertex-Region (MVR) +1 − − +1 −
Kill-Vertex-Region (KVR) −1 − − −1 −
Make-Edge-Loop (MEL) − +1 − − +1
Kill-Edge-Loop (KEL) − −1 − − −1

Make-Edge-Join-Region (MEJR) − +1 − −1 −
Kill-Edge-Split-Region (KESR) − −1 − +1 −

Make-Edge-Vertex (MEV) +1 +1 − − −
Kill-Edge-Vertex (KEV) −1 −1 − − −

Make-Face-Kill-Loop (MFKL) − − +1 − −1
Kill-Face-Make-Loop (KFML) − − −1 − +1

Split-Edge-Make-Vertex (SEMV) +1 +1 − − −
Join-Edge-Kill-Vertex (JEKV) −1 −1 − − −

4.3. The Actual Implementations of the Euler Operators

As shown in this section, the key operation for implementing the
Euler operators of interest consists of merging and splitting effi-
ciently the MC-components. The encoding of the MC-decomposi-
tion in Section 3 supports efficiently these operations. Only the uni-
que identifier of the representative cell γ is encoded for each MC-
component [γ]. The actual top cells in [γ] belong to the transitive c-
losure of ∼MC, and are not needed when merging two MC-compo-
nents, and splitting a MC-component. In fact, it is sufficient to up-
date the representative cells. This operation is performed in con-
stant time. The implementation of an update u is decoupled in two
parts, involving the updates onMΓ (that we do not consider), and
the corresponding updates inMCΓ (proposed in this section).

The MVR and the KVR operators. The MVR operator creates a
new MC-component [v], corresponding to a new top vertex v, thus
to a new region in Γ. Instead, the KVR operator removes an existing
top vertex v from Γ and the corresponding MC-component [v] from
MCΓ. The time complexity of both these operators is constant.

The MEL operator. This operator creates a new top edge e betwe
en the vertices v1 and vn in the same region of Γ (see Figure 3). The
vertices v1 and vn are not adjacent, and belong to a 0-path, formed
by adjacent edges, such that their star is empty, or contains several
2-cells, that are not bounded by all edges in the 0-path. A new hole
loop is created after adding e, but this is not relevant. Instead, it is
mandatory to modify the MC-components in St(v1) and St(vn) af-
ter adding e. This latter belongs initially to the MC-component [e],
which is merged and manipulated only if St(v1) and St(vn) contain
either only one or two top edges, as follows:
• if St(v1) = {e′}, then it is possible to merge e with the MC-

component in St(v1) by considering also St(vn):
1. if St(vn) = {e′′}, then [e] is merged with the MC-components

in St(v1) and St(vn). If e′ and e′′ are MC-equivalent, then
they belong to a MC-component [e′], which is replaced by [e],
containing e and the edges in [e′]. Otherwise, they belong to
[e′] and [e′′], respectively, that are replaced by [e], containing
e and the edges in [e′] and [e′′]. The time complexity of these
operations is linear in the number of the top edges in [e′].

2. If St(vn) = {e′′,e∗}, then a not MC-adjacency occurs at vn,
and St(vn) contains a MC-component [e′′], which is split. In
particular, a new MC-component [e∗] is created, containing
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all edges, that are MC-equivalent to e∗, and different from e′′.
The situation is the same as the previous case 1 (if we discard
the edges in [e∗]). The time complexity of these operations is
linear in the total number of the top edges in [e′] and [e∗].

3. Otherwise, [e] cannot be merged with other MC-components.

• If St(v1) = {e′,e∗}, then a not MC-adjacency also occurs at v1,
and [e] is not merged with the MC-components in St(v1). By
construction, e′ and e∗ belong to a MC-component, which is split
into [e′] and [e∗], containing, respectively, all top edges, that are
MC-equivalent to e′ and e∗. Then, St(vn) is checked as follows:
– if St(vn) = {e′′, ē}, then a not MC-adjacency occurs at vn,

and the edges e′′ and ē belong to a MC-component, which
is removed and split into two MC-components [e′′] and [ē].
These latter contain, respectively, all top edges, that are MC-
equivalent to e′′ and ē. Then, [e′] and [e′′], as well as [e∗] and
[ē], are merged pairwise (respectively), if their representative
top edges are MC-equivalent. The time complexity of this
operation is linear in the number of the edges in [e′] and [e∗].

– Otherwise, there is nothing to be done.

• If the roles of v1 and vn in the previous cases are swapped, then
the resulting situation is the same.
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Figure 3: The MEL and the KEL operators modify a top edge e in the hole
loop, formed by the edges e, e1, e2, and e3 in a 2-complex.

The KEL operator. This operator removes an existing top edge
e = (v1,vn) from a hole loop {e1, . . . ,en−1,e} in the 2-complex Γ.
The star of every edge in the hole loop may be top, or may contain
several 2-cells, that are not bounded by all edges in the hole loop.
After removing e, the remaining edges form a not closed 0-path
v1 �0 vn. By construction, e belongs to an existing MC-component
[e], from which it is removed. In order to modify correctly the MC-
components of dimension 1 in St(v1) and St(vn), it is important to
check whether a not MC-adjacency continues to occur at vi, even
if e is removed (for i = 1 and i = n), i.e., if St(vi) contains at least
one MC-component of dimension 2, and at least four top edges
(including e). Otherwise St(vi) contains e, and up to two top edges.
We proceed as follows (see Figure 3):
• if a not MC-adjacency occurs both at v1 and vn, then [e] is re-

moved. The time complexity of this operation is constant.
• Otherwise, we check St(v1) and St(vn) as follows:

1. if St(v1) = {e,e′}, then St(v1) contains only the MC-compo-
nent [e] (formed by at least e and e′), becoming [e′]. If pos-
sible, [e′] is merged with an existing MC-component, formed
by a MC-path v1 �

1
MC vn, which does not traverse e. The time

complexity of these operations is linear in the number of the
top edges, that are MC-equivalent to e′.

2. If St(v1) = {e′,e′′,e}, then a MC-adjacency occurs at v1 after
removing e, and [e′] and [e′′] are merged together. The result-
ing MC-component is indicated as [e′]. At this point:
– if St(vn) = {ē′, ē′′,e}, then it possible to merge together

the existing MC-components [ē′] and [ē′′] in St(vn) in or-
der to obtain a new MC-component [ē′] (as in the previous
case). If the edges in [e′] are MC-equivalent to the edges
in [ē′′], then they are merged into a new MC-component
[ē′′], otherwise [e′] and [ē′′] remain independent.

– If St(vn) = {ē′,e}, then a new MC-component [ē′] is
merged with [e′] (like in the case 1), if possible.

– If a not MC-adjacency occurs at vn, even if e is removed,
then [e′] is merged with an existing MC-component in
St(vn), if possible.

The time complexity of these operations is linear in the num-
ber of the top edges in [e′].

3. If the roles of v1 and vn in the previous cases are swapped,
then the resulting situation is the same.

These operators update many MC-components, intersecting the ge-
neralized neighborhood σ

0(e), but the top edges of interest do not
belong necessarily to σ

0(e).

The MEJR and the KESR operators. The MEJR operator cre-
ates a new top edge e between the existing vertices v1 and vn, be-
longing, respectively, to two disconnected regions of Γ, that are
merged into one connected region. Instead, the KESR operator re-
moves an existing top edge e = (v1,vn), connecting two regions of
Γ. These latter are disconnected, if e is removed. These operators
(see Figure 4) are similar to the MEL and the KEL operators, but
without manipulating the hole loops.

MEJR

KESR

e

v

v

1

2

v

v

1

2

Figure 4: The MEJR and the KESR operators modify a top edge e =

(v1,v2), connecting two regions in a 2-complex.

The MEV operator. This operator creates a new top edge e =
(v,v′) between an existing vertex v and a new vertex v′ in Γ. Edge
e represents the MC-component [e], which may be merged with a
MC-component of dimension 1. It is necessary to check the exis-
tence of a MC-adjacency only along v, since v′ is new. In particular:
• if v is a top vertex in Γ, then it represents the MC-component [v].

Thus, [e] is added as a new MC-component, and [v] is removed
fromMCΓ. The time complexity of these operations is constant.

• Otherwise, the existing MC-components in St(v) in addition to
[e] are analyzed as follows (see Figure 5):
1. if St(v) contains either at least one MC-component of dimen-

sion 2, or at least two MC-components, not necessarily of
the same dimension, then it is not possible to merge [e] with
other MC-components inMCΓ. Thus, [e] is added toMCΓ,
and also the time complexity of these operations is constant.

2. Otherwise, St(v) contains only one MC-component [e′] of di-
mension 1, containing either one top edge e′, or two top edges
e′ and e′′ in St(v), by construction (see Figure 5). Hence:
– if St(v) = {e′}, then a new MC-component is created,

containing e and the top edges in [e′]. For the sake of sim-
plicity, the new MC-component is represented as [e], and
the time complexity of these operations is constant.
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– If St(v) = {e′,e′′}, then it is not possible to merge [e] with
[e′], since a MC-adjacency cannot occur at v. The new
MC-component [e] is added toMCΓ, and it is necessary to
check if e′ and e′′ belongs to a closed MC-path, connect-
ing v with itself without traversing e. In other words, if [e′]
is a hole loop, formed only by several top edges, then [e′]
remains unchanged in MCΓ. Otherwise, [e′] is removed
from MCΓ, and is split into two MC-components, con-
taining all top edges, that are, respectively, MC-equivalent
to e′ and e′′ (see Figure 5). These new MC-components
are indicated as [e′] and [e′′]. The time complexity of these
operations is linear in the number of the top edges in [e′].

MEV

KEV

v'
e

e'

e''

v

e''

v

e'

Figure 5: The MEV and the KEV operators modify a top edge e in the star
of a vertex v in a cell 2-complex.

The KEV operator. This operator removes an existing top edge
e = (v,v′), as well as the vertex v′, such that St(v′) = {e}. By con-
struction, e belongs to an existing MC-component [e]. This MC-
component is modified as follows (see Figure 5):

1. if St(v) = {e}, then [e] is removed fromMCΓ, since it contains
no top edge. After removing e, the vertex v becomes a top vertex,
and a new MC-component [v] is added toMCΓ. Hence, the time
complexity of these operations is constant.

2. If St(v) contains either at least one MC-component of dimension
2, or at least three MC-components, not necessarily of the same
dimension, in addition to [e], then [e] is removed from MCΓ.
The time complexity of these operations is constant.

3. If St(v) contains two MC-components [e′] and [e′′] of dimen-
sion 1 in addition to [e], then a MC-adjacency occurs at v, after
removing e from Γ and [e] from MCΓ. For the sake of sim-
plicity, we assume that e′ and e′′ are in St(v). Hence, the MC-
components [e′] and [e′′] are removed from MCΓ, and a new
MC-component [e′] (which may be also indicated as [e′′]) is
added toMCΓ. The new MC-component [e′] contains the union
of the top edges in the previous MC-components [e′] and [e′′].
The time complexity of these operations is constant.

4. If St(v) contains only two top edges e and e′, belonging to the
same MC-component [e] (by construction), then it is sufficient
to remove [e] fromMCΓ, and to add a new MC-component [e′],
containing all top edges in the previous MC-component [e], ex-
cept e. The time complexity of these operations is constant.

The MFKL operator. This operator creates a new 2-cell γ, which
fills the void, enclosed by an existing hole loop {ei}n

i=1 in Γ. Af-
ter adding γ, the hole loop is removed, and the star of each edge ei
contains at least γ. Thus, all MC-components, formed by edges in
the hole loop, are removed. At this point, it is necessary to check if
γ may be merged with the existing MC-components along any edge
in the hole loop. We store their representative cells in a set s, ini-
tially empty, and we proceed on each ei as follows (see Figure 6):

1. if edge ei is top, then it becomes a border edge of γ.
2. If St(ei) = {γ′}, then it is possible to merge γ with the existing

MC-component [γ′] of dimension 2. The 2-cell γ
′ is stored in s.

3. If St(ei) contains at least three top 2-cells in addition to γ, then
a not MC-adjacency occurs at ei.

4. If St(ei) = {γ′,γ′′} (except γ), then γ
′ and γ

′′ belong to an exist-
ing MC-component, which may remain unchanged, or be split
into two MC-components. Let bγ′ be a boolean flag, which is
true, if and only if there exists a MC-path γ

′�2
MC γ, not travers-

ing γ
′′, but passing through an edge eγ′ in the initial hole loop.

This MC-path identifies a new MC-component [γ′]. Similarly,
let bγ′′ be a boolean flag, which is true, if and only if there ex-
ists a MC-path γ

′′�2
MC γ, not traversing γ

′, but passing through
an edge eγ′′ in the initial hole loop. This MC-path identifies a
new MC-component [γ′′]. If eγ′ = eγ′′ , then the existing MC-
component in St(ei) is split into two MC-components [γ′] and
[γ′′]. Otherwise, it is necessary to check bγ′ and bγ′′ as follows:

• if both bγ′ and bγ′′ are true, then the MC-component [γ′] in
St(ei) is merged with γ, and γ

′ is added to s.
• If both bγ′ and bγ′′ are not true, then the MC-component of

interest in St(ei) is removed, and replaced by [γ′] and [γ′′].
• If only bγ′ is true, then the MC-component of interest in

St(ei) is removed, and split into [γ′], which is merged with γ

(γ′ is saved in s), and [γ′′], which is directly created inMCΓ.
• If only bγ′′ is true, then the MC-component of interest in

St(ei) is removed, and split into [γ′′], which is merged with γ

(γ′′ is saved in s), and [γ′], which is directly created inMCΓ.

A new MC-component [γ] is formed by 2-cells in s. The time com-
plexity of these operations is linear in the number of the 2-cells in
the MC-components, that are incident at the edges in the hole loop.
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Figure 6: The MFKL and the KFML operators modify a 2-cell, which is
bounded by the hole loop of edges e1, e2, and e3.

The KFML operator. This operator removes an existing 2-cell γ

without destroying its immediate edges {ei}n
i=1, that form a new

hole loop in Γ. It is important to check if new MC-components of
dimension 1, involving all edges in Bi(γ), that become top edges,
after removing γ, must be added toMCΓ. We assume to store these
edges into a list q, initially empty. It may be necessary to fix and to
update correctly those MC-components, that are connected initially
through γ. We assume to store the representative 2-cells of these
MC-components into a set s, initially empty. The MC-components
in St(ei), with i = 1, . . . ,n, are updated as follows (see Figure 6):

1. if St(ei) = {γ}, then ei becomes a top edge after removing γ, and
is saved in the list q.

2. If St(ei) contains more than three top 2-cells, then a not MC-
adjacency continues to occur at ei even if γ is removed.

3. If St(ei) = {γ,γ′}, then a MC-adjacency occurs at ei. By con-
struction, γ and γ

′ belongs to an existing MC-component, which
may be split when removing γ. The resulting MC-component is
indicated as [γ′], and γ

′ is saved in s.
4. If St(ei) = {γ,γ′,γ′′}, then a new MC-adjacency occurs at ei

between γ
′ and γ

′′, when γ is removed, corresponding to a new
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MC-component [γ′]. This latter contains all 2-cells, that are MC-
equivalent to γ

′ (saved in s) and γ
′′.

The time complexity of this traversal is linear in n. At this point,
the set s contains the representative cells of those MC-components,
traversing initially γ, that may be modified (if necessary). At this
point, every 2-cell γi in s is visited as follows:

• if there does not exist γi �
2
MC γ̄ for any γ̄ in s, then γi is removed

from s, and a new MC-component [γi] is created.
• Otherwise, there exists a MC-path, connecting γi with several 2-

cells in s. These latter and γi form a new MC-component [γi], and
are removed from s.

The remaining 2-cells in s form a new MC-component. The time
complexity of these operations is linear in the total number of the 2-
cells in the MC-components, that are incident at the edges in Bi(γ).
Finally, we identify all MC-components of dimension 1, formed by
all top edges in q. These new MC-components are added toMCΓ.
The time complexity of these operations is linear in ‖q‖.

The SEMV and the JEKV operators. The SEMV operator cre-
ates a new vertex v, and splits a top edge e = (v1,v2) into the top
edges e1 = (v1,v) and e2 = (v2,v). The edge e belongs to the MC-
component [e], e1 and e2 correspond, respectively, to [e1] and [e2],
and a MC-adjacency occurs at v. Thus, e1 and e2 belong to [e] (see
the Lemma 1), becoming [e1]. Instead, the JEKV operator is the re-
verse operator, and joins e1 = (v1,v) and e2 = (v,v2) into the edge
e = (v1,v2). The time complexity of these operators is constant.

5. The MC-decomposition and Other Updates

In this section, we show how applying several high-level updates
on the MC-decompositionMCΓ of a 2-complex Γ.

Template-based Updates. These updates are based on a specific
template pattern, applied on each 2-cell in the same spirit of the in-
teractive retopology [MTP∗15], the polyhedral patterns [JTV∗15],
as well as the Stellar and the Handle operators [CDF12]. Broadly
speaking, these operators replace a top 2-cell with any of its pos-
sible tessellations. In other words, they replace an existing MC-
path with another MC-path, such that the new top cells cover the
original cells. Following Lemma 1, this operation is closed with
respect to ∼MC in the same spirit of the SEMV and the JEKV op-
erators. These updates are implemented by combining the KFML,
the MEV, and the MEL operators, as well as their inverse operators.
Some examples are shown in Figures 2. The template-based oper-
ators are also defined on the 3-complexes [OS15], and the stellar
operators are dimension-independent.

Merging two MC-adjacent 2-cells. This update merges two 2-
cells γ1 and γ2, that are MC-adjacent along the edges {ei}n

i=1, into
a new 2-cell γ in Γ. This operation removes γ1 and γ2 through the
KFML operator, which creates two loops. The edge e1 is removed
by the KFML operator (destroying two loops), and the remaining
edges {ei}n

i=2 are deleted through the KEV operator, creating a new
(larger) hole loop. This latter is the immediate boundary of the new
2-cell γ, added by the MFKL operator. The reverse operator splits
an existing 2-cell into two 2-cells, and is a template-based operator.

These editing operators modify only the connectivity of the top
cells in a MC-component, and ∼MC is closed with respect to these
updates. Thus,MCΓ remains unchanged. Other updates, e.g., the
cell and edge collapses, may modifyMCΓ.

Cell collapse. This operator is common in the homology compu-
tations [BCMA∗11], and collapses a top cell along an immediate
border face. It is equivalent to the KEV operator, if applied on a top
edge. Instead, it removes a 2-cell through the KFML operator, and
a border edge through the MEL operator.

The Edge Collapse. This update collapses an existing edge e =
(v1,v2) into a vertex v in the 2-complex Γ. Broadly speaking, all 2-
cells in St(e) are removed, and all cells, belonging only to St(v1) or
St(v2) are made incident at v. The collapse of a manifold edge is ex-
pressed in terms of the Stellar operators [Ago05]. In the case, if the
2-cells in St(e) are completely contained in a MC-component, and
no edge in their immediate boundaries is not manifold, then∼MC is
closed with respect to the edge collapse (see Figure 7(a)), since the
collapse becomes a specific template-based operator (in this case).
Also the inverse operator, called the Vertex Split (VS) operator satis-
fies the same conventions. Instead, ∼MC is not closed with respect
to the collapse of either a top (see Figure 7(b)) or a non-manifold
edge (see Figure 7(c)). In fact, several MC-components may be
merged into only one MC-component. Similarly, this operator may
either reduce the dimension of the top cells in a MC-component,
or split a MC-component into new MC-components of different di-
mension. In other words, the edge collapse modifies not only the
connectivity of the cells, but also the topology of Γ. Thus, it is
mandatory to reconstruct a large number of the MC-components,
that intersect σ

h(e), for any h >> 0, corresponding even to Γ. Col-
lapsing an edge without satisfying specific constraints is not effi-
cient. Currently, updating the MC-decomposition with an edge col-
lapse is an open problem, and must be investigated in the future.
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Figure 7: (a) The collapse of a manifold edge, such that its star is stored
in a MC-component, and none of their edges is non-manifold, maintains
∼MC . This is not true, if collapsing (b) a top, and (c) a non-manifold edge.

6. Experimental Results

In this section, we show our experimental results, that are based
on [CDF13]. In any case, our implementation is designed on a man-
grove, which is the graph-based representation of a topological data
structure [CDF14]. The mangroves are the basis for the Mangrove
Topological Data Structure (Mangrove TDS) Library [MAN], fo-
cused on the fast design of the topological data structures. Hence,
our implementations are written only once, and reused with sev-
eral topological data structures, loaded dynamically. To the best of
our experience, this is the unique method in the current literature
for reaching this objective without the wrapping techniques. Our
implementations will be publicly available.

In order to validate our approach, we evaluate the running times,
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Model st nMC m st
m T N

m T B
m T I

m m st
m T B

m T I
m m st

m T B
m T I

m

Cubes
1K 44.4K 19.1K 19 0.55 100K 440.4K 189 51 1.5M 6M 4.39K 823

40.4K 4 5K 60.4K 115.7K 28 2.8 200K 840K 371 107 2M 8M 5.4K 1.08K
(quad.) 10K 80.4K 281.4K 35 5 500K 2M 1K 360 2.5M 10M 7.2K 1.39K

40K 220.4K − 85 21.4 1M 4M 1.87K 520.6 3M 12M 8.6K 1.67K

Frame
1K 44.7K 19.9K 21 0.58 100K 440.7K 196 58 1.5M 6.1M 4.8K 830

40.7K 132 5K 60.7K 115.9K 29 3 200K 840.7K 395 111 2M 8.1M 5.8K 1.1K
(quad.) 10K 80.7K 294K 36 5.5 500K 2.1M 1.1K 372 2.5M 10.1M 7.3K 1.49K

40K 200.7K − 86 22 1M 4.1M 1.9K 538 3M 12.1M 8.7K 1.68K

Twist
5K 92.4K 183K 41 2.8 200K 482.4K 842 107 3M 6M 10.8K 1.67K

82.4K 4 10K 102.4K 392K 48 5.3 500K 1M 2.4K 360 4M 8M 11.8K 2.1K
(simpl.) 40K 162.4K − 163 21 1M 2M 3.7K 521 5M 10M 16.8K 2.8K

100K 286.4K − 394 51.2 2M 4M 8.3K 1.08K 6M 12M 23.4K 3.3K

Mecha
5K 96.7K 195K 42 2.85 200K 486.7K 843.1 107.3 3M 6.1M 10.9K 1.68K

86.7K 45 10K 106.7K 413K 49 5.4 500K 1.1M 2.42K 362.9 4M 8.1M 11.9K 2.16K
(simpl.) 40K 166.7K − 166 23 1M 2.1M 3.71K 521.7 5M 10.1M 16.9K 2.9K

100K 286.7K − 395 52.1 2M 4.1M 8.4K 1.09K 6M 12.1M 23.5K 3.4K

Table 2: The experimental results show the validity of our interactive approach (see the running time T I
m), after applying m random updates on the MC-

decompositions (with nMC MC-components) for several 2-complexes with st
m cells (initially st = st

0), with respect to the running times T N
m and T B

m of the naive
and the batch approaches, respectively. First two shapes are discretized by non-manifold quad meshes and updated by the template-based operators, while the
remaining shapes are described by simplicial 2-complexes and updated by the stellar split operators. All running times are expressed in milliseconds.

necessary for computing the MC-decompositionMCΓ after apply-
ing m random updates on a 2-complex Γ. The time complexity for
computingMCΓ is linear in st [Can12]. First, we analyze the run-
ning time T N

m , needed for computingMCΓ by using the naive ap-
proach. After applying k random updates (for any 0 ≤ k ≤ m− 1),
the resulting complex Γk contains st,k top cells. Thus, T N

m is linear
in ∑k=0,...,m−1 st,k. We also evaluate the running time T B

m of the
batch approach, which is used for computingMCΓ only after ap-
plying m updates on Γ. Finally, we evaluate the total running time
T I

m, needed for applying interatively m random updates on Γ. We
apply m random stellar (split) updates on the top simplices, and m
random template-based updates on the top cells in a cell 2-complex.
This latter contains initially st top cells. This is not a restriction,
since the implementation of these updates requires almost the Eu-
ler operators in Section 4.3. Table 2 shows our experimental results,
obtained on a workstation with Intel i5 processor and 4Gb RAM.
We compare the running times T N

m , T I
m, and T B

m (in milliseconds)
by varying m. The running times, requiring more than 10 minutes
of computations (6× 105 ms), are discarded. It is clear that the
naive approach may be unfeasible, even if after a small number m
of updates (about 40K). Already in this case, T N

m exceeds 10 min-
utes of computation. Our interactive approach exhibits fast running
times T I

m (even at interactive rate), and is also more competitive
than the batch approach. Thus, it provides a more efficient strategy
for constructing (interactively) the MC-decompositionMCΓ.

7. Conclusions and Future Work

This paper provides one step towards the automatic editing of the
structural model for the non-manifold shapes in the same spirit of
[IS15]. We have addressed the problem of manipulating automatic-
ally the MC-decomposition of a complex [HDF07] through the Eu-
ler operators without being recomputed from scratch after an up-
date. This approach is feasible, since only a local portion of a com-
plex is modified by an update. It is an important advantage with
respect to recomputing completely the MC-decomposition. In this

paper, we have focused our attention only on the 2-complexes,
but our approach can be generalized in any dimension. Our im-
plementations are based on the two-level graph-based representa-
tion of the MC-decomposition in [CDF13], integrated with a man-
grove. This latter is the graph-based representation for a topological
data structure [CDF14], and is the basis of the Mangrove TDS Li-
brary [MAN], focused on the fast design of the topological data
structures. Our implementation is designed only once, and reused
with several topological data structures.

Our experimental results show that the manipulation of the MC-
decomposition, currently considered as a batch task, can be solved
at interactive rate, like the applications in [JGGN15,MTP∗15]. Our
approach also allows to to improve the computational cost of sev-
eral applications, e.g., the semantic reasoning [HDF07] and the ho-
mology computations [BCMA∗11], by reducing the resolution, and
maintaining the structure for the complex of interest. Another appli-
cation is in the context of the 3D printing, like in [WZK16]. Other
possible applications try to optimize the quality of the elements
in the MC-components, satisfying a specific criterion in the same
spirit of [Si15] (just to mention one). These techniques are based
on the Euler operators, discussed in this paper.

Finally, our contribution is an intermediate step towards the mul-
tiresolution structural model of a non-manifold shape, which takes
into account the dependency relation among the updates, applied
on the MC-decomposition, like in [DFPM97]. Specifically, it is
important to consider what MC-components and top cells are cre-
ated/removed by an update, as well as the connectivity of the MC-
components along the non-manifold singularities. This model is
challenging, but is simplified in the same spirit of [CADM11]. In
other words, it is not necessary to encode explicitly the connectivity
of the top-cells in a MC-component, since they are MC-equivalent.
It is also possible to encode only the dependency relation among the
MC-components, and their connectivity through the non-manifold
singularities. Instead, the explicit connectivity of the top cells in
the MC-components is generated on-the-fly upon request by the

c© 2016 The Author(s)
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automatic mesh generation, the retopology, and the quadrangula-
tion techniques (just to mention some). This allows to extract the
structural representations at different resolutions without consider-
ing the combinatorial and the geometric aspects of a complex.
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