
A Dimension-Independent Data Structure for
Simplicial Complexes

Leila De Floriani1, Annie Hui2, Daniele Panozzo1, and David Canino1

1 Department of Computer Science, University of Genova, Italy
deflo@disi.unige.it, panozzo@disi.unige.it, canino@disi.unige.it

2 Department of Computer Science, University of Maryland, MD, USA
hui@cs.umd.edu

Summary. We consider here the problem of representing non-manifold shapes dis-
cretized as d-dimensional simplicial Euclidean complexes. To this aim, we propose a
dimension-independent data structure for simplicial complexes, called the Incidence
Simplicial (IS) data structure, which is scalable to manifold complexes, and sup-
ports efficient navigation and topological modifications. The IS data structure has
the same expressive power and exibits performances in query and update operations
as the incidence graph, a widely-used representation for general cell complexes, but
it is much more compact. Here, we describe the IS data structure and we evaluate its
storage cost. Moreover, we present efficient algorithms for navigating and for gen-
erating a simplicial complex described as an IS data structure. We compare the IS
data structure with the incidence graph and with dimension-specific representations
for simplicial complexes.

1 Introduction

Simplicial complexes are commonly used to represent objects in many appli-
cations, including finite element analysis, solid modeling, animation, terrain
modeling and visualization of scalar and vector fields [7, 8, 15, 19, 20]. Infor-
mally, a manifold (with boundary) M is a compact and connected subset of
the Euclidean space such that the neighborhood of each point of M is home-
omorphic to an open ball, or to an open half-ball. Objects, that do not fulfill
this property at one or more points, are called non-manifold, while they are
called non-regular if they also contain parts of different dimensions.

Existing modeling tools are generally designed to handle only shapes with a
manifold domain, since they are topologically simpler. However, non-manifold
and non-regular objects arise in several applications. For instance, they are
produced through the idealization process when preparing an object for finite
element analysis. To guarantee acceptable computation times, not only details
having a low impact on the object behavior are removed, but also subparts
of the object are idealized. For instance, parts presenting a beam behavior



2 Leila De Floriani, Annie Hui, Daniele Panozzo, and David Canino

may be substituted with 1-dimensional entities, and parts presenting a plate
behavior may be replaced by 2-dimensional surfaces. Thus, the resulting object
will contain non-manifold singularities and parts of different dimensions.

In the literature, both dimension-specific and dimension-independent data
structures have been developed for cell and simplicial complexes: many of
them have domains that are limited to manifold shapes [7]. A widely used
data structure is the Incidence Graph (IG) [10], developed for cell complexes
in arbitrary dimensions. However, if restricted to simplicial complexes, the
incidence graph results in a verbose representation, which also does not scale
well to the manifold case, i.e., it has a large overhead when representing a
manifold shape. Scalability is an important property for data structures for
cell and simplicial complexes, since non-manifold objects often present few
non-manifold singularities.

Here, we propose a dimension-independent data structure for simplicial
complexes, that we call the Incidence Simplicial (IS) data structure. The IS
data structure encodes all the simplices of a simplicial complex and a subset of
the relations encoded by the incidence graph. We show that this information
is sufficient to retrieve all the relations among the elements of a simplicial d-
complex efficiently. The algorithms for retrieving such relations are the basic
traversal tools for navigating in a complex. The ability to navigate is essen-
tial to any modeling and update operations, as such operations require the
knowledge of the local neighborhood of every simplex. We show that the IS
data structure scales well to the manifold case. It has the same representation
power and comparable performances in querying operations as the incidence
graph, but it is much more compact. It represents all the simplices explicitly
and uniquely, as required in applications where attributes must be attached
to all the simplices.

Thus, novel contributions of this paper are:

• the Incidence Simplicial data structure, a dimension-independent and scal-
able data structure for encoding d-dimensional simplicial complexes;

• efficient navigation algorithms for retrieving topological relations from the
IS data structure;

• an algorithm for generating an IS data structure from a non-topological
representation of a d-dimensional simplicial complex.

The remainder of this paper is organized as follows. In Sect. 2, we sum-
marize some background notions on simplicial complexes and on topological
relations. In Sect. 3, we review related work. In Sect. 4, we describe the IS
data structure, while in Sect. 5 we discuss the implementation of the IS data
structure and its storage cost. In Sect. 6, we describe an algorithm for gener-
ating an IS data structure from an unstructured collection of simplices, while
in Sect. 7 we present navigation algorithms for efficiently retrieving topolog-
ical relations among the simplices of a complex. In Sect. 8, we compare the
IS data structure with the incidence graph and with dimension-specific data



A Dimension-Independent Data Structure for Simplicial Complexes 3

structures for simplicial complexes. Finally, in Sect. 9, we draw some conclud-
ing remarks and discuss future work.

2 Background Notions

2.1 Simplicial Complexes

A Euclidean simplex σ of dimension d is the convex hull of d+1 linearly
independent points in the n-dimensional Euclidean space En, with d ≤ n.
We simply call a Euclidean d-simplex a d-simplex : a 0-simplex is a vertex, a
1-simplex an edge, a 2-simplex a triangle, and a 3-simplex a tetrahedron. d is
called the dimension of σ and is denoted dim(σ). Any Euclidean k-simplex
σ′, with k < d, generated by a set Vσ′ ⊆ Vσ of cardinality k+1 ≤ d, is called
a k-face of σ. Where no ambiguity arises, the dimension of σ′ can be omitted
and σ′ is simply called a face of σ.

A finite collection Σ of Euclidean simplices forms a Euclidean simplicial
complex when (i) for each simplex σ ∈ Σ, all the faces of σ belong to Σ, and
(ii) for each pair of simplices σ and σ′, either σ ∩ σ′ = ∅ or σ∩σ′ is a face
of both σ and σ′. The maximal dimension d of the simplices in Σ is called
the order, or the dimension of complex Σ. The domain, or carrier, of a d-
dimensional Euclidean simplicial complex (also called a simplicial d-complex)
Σ embedded in En, with d ≤ n, is the subset of En defined by the union, as
point sets, of all the simplices in Σ.

The (combinatorial) boundary of a simplex σ is the set of all the faces of σ
in Σ, different from σ itself. The star of a simplex σ is the set of simplices in
Σ that have σ as a face. Any simplex σ such that the star of σ contains only
σ is called a top simplex. The link of a simplex σ is the set of all the faces of
the simplices in the star of σ which are not incident in σ.

Two simplices are incident to each other if one of them is a face of the
other, while they are k-adjacent if they share a k-face: in particular, two
vertices are called adjacent if they are both incident at a common edge. An
h-path is a sequence of (h+1)-simplices (σi)k

i=0 in a simplicial complex Σ such
that two consecutive simplices σi−1 and σi in the sequence are h-adjacent. Two
simplices σ and σ∗ are h-connected when there exists an h-path (σi)k

i=0 such
that σ is a face of σ0 and σ∗ is a face of σk. A subset Σ∗ of a complex Σ is
called h-connected if and only if any two simplices of Σ∗ are h-connected. Any
maximal h-connected sub-complex of a complex Σ is called an h-connected
component of Σ.

A d-complex Σ in which all top simplices are d-simplices is called regular.
A regular (d−1)-connected d-complex in which the star of all (d−1)-simplices
consists of one or two simplices is called a (combinatorial) pseudo-manifold.
Note that a carrier of a pseudo-manifold is not necessarily a manifold object.
We will call a manifold simplicial complex a pseudo-manifold such that the
link of any 0-simplex, with k<d−1, is homeomorphic to the (d− 1)-sphere.



4 Leila De Floriani, Annie Hui, Daniele Panozzo, and David Canino

In a simplicial d-complex Σ, a p-chain c (with 0 ≤ p ≤ d) is a linear
combination of p + 1 simplices σi, defined as c =

∑p
i=0 aiσi, where ai ∈ Z.

A 0-simplex can be expressed as a 0-chain, while a p-simplex σ (with p > 0)
can be expressed as a p-chain, generated by its faces λi, with i = 0, . . . , p.
We can define the boundary of a p-simplex σ as δp(σ) =

∑p
i=0 aiδp−1(λi) by

recursively computing the boundary of each λi, with i = 0, . . . , p since λi is
a (p − 1)-chain by definition. The coefficients ai of a p-chain do not have a
geometric interpretation, except when ai = ±1. In this case, we can relate
them to the orientation of the simplices: a formal definition of this concept
is available in [1]. If ai = 1, then we can consider the positive orientation
of a simplex σi, otherwise we can consider the opposite one. Hence, we can
define the oriented boundary of a p-simplex σ, generated by its faces λi, as
δp(σ) =

∑p
i=0(−1)iδp−1(λi).

2.2 Topological Relations

The connectivity information among the entities in a cell or in a simplicial
complex is expressed through topological relations. Data structures for cell
and simplicial complexes can be described formally in terms of the topological
entities and relations they encode. We define topological relations for the case
of a cell complex (since a simplicial complex can be seen as a special case of a
cell complex). Informally, a cell complex is a collection of cells, homeomorphic
to a closed or an open k-ball, such that the boundary of each cell is the union
of lower-dimensional cells. We consider a cell d-complex Γ and a p-cell γ ∈ Γ ,
with 0≤ p≤ d. We can define topological relations as follows:

• Boundary relation Rp,q(γ), with 0 ≤ q ≤ p−1, consists of the set of q-cells
which are faces of γ.

• Coboundary relation Rp,q(γ), with p + 1 ≤ q ≤ d, consists of the set of
q-cells incident in γ.

• Adjacency relation Rp,p(γ), with p > 0, consists of the set of p-cells in Γ
that are (p−1)-adjacent to γ.

• Adjacency relation R0,0(γ), where γ is a vertex, consists of the set of ver-
tices that are adjacent to γ through a 1-cell (an edge).

We call constant any relation which involves a constant number of entities,
while relations which involve a variable number of entities are called variable.
In general, coboundary and adjacency relations are variable, while boundary
relations are constant in simplicial complexes. We consider an algorithm for
retrieving a topological relation R to be optimal if it retrieves R in time linear
in the number of the involved entities. If the retrieval of a relation requires
examining the star of all the cells adjacent to or on the boundary of the query
cell, then we say that the data structure offers a local support for the retrieval
of that relation. If the retrieval of a relation requires examining all the cells
of a specific dimension, then the data structure does not support an efficient
retrieval of that relation.



A Dimension-Independent Data Structure for Simplicial Complexes 5

3 Related Work

Dimension-independent data structures have been proposed for encoding d-
dimensional manifold cell complexes. Examples are the cell-tuple [2], and the
n-G-map [16]. The incidence graph [10] represents a cell complex by encoding
all the cells of the complex and a subset of their boundary and coboundary
relations. It provides a complete and verbose description of the complex. The
simplified incidence graph [5] is a simplified version of the incidence graph for
simplicial complexes, but it is not suitable for supporting efficient updates of
the complex. The indexed data structure with adjacencies [20] is a dimension-
independent data structure for pseudo-manifold simplicial d-complexes em-
bedded in the d-dimensional Euclidean space. It encodes only the d-simplices
together with boundary relation Rd,0 and adjacency relation Rd,d.

Several dimension-specific data structures have been developed for mani-
fold 2-dimensional cell complexes [7], whereas some of them are specific for tri-
angle meshes, e.g. the Corner table [23] and the star vertex [13] data structures.
Data structures for non-manifold, non-regular, 2-dimensional cell complexes
have been proposed for modeling non-manifold solids. The partial entity data
structure [15] is the most scalable to the manifold case, but it is still verbose
when applied to simplicial 2-complexes [7]. Dimension-specific data structures
have been also proposed for encoding simplicial 2-complexes [3, 5, 19]. The
loop edge-use [19] and the directed edge [3] data structures are for regular sim-
plicial complexes in which non-manifold singularities occur only at edges. The
former is a specialization of the partial entity data structure, and the latter is
an extension of the half-edge data structure [18] to non-manifold shapes. The
Triangle-Segment (TS) data structure [8] is a compact data structure for non-
manifold simplicial 2-complexes embedded in 3-dimensional Euclidean space,
encoding only the top simplices and the vertices of the complex. A compar-
ison among such data structures, presented in [7], shows that the TS data
structure requires about half of the space required by the loop edge-use and
by the directed edge data structures.

To the extend of our knowledge, very few representations have been pro-
posed in the literature for 3-dimensional manifold complexes, i.e., the facet-
edge [9] and the handle-face [17] data structures. Both of them describe 3-
dimensional cells implicitly by encoding the manifold complexes that form
their boundary. The handle-face structure is an extension of the handle-edge
data structure [4] for 2D complexes. In [14], a scalable data structure for mani-
fold tetrahedral complexes has been proposed, which extends the Corner table
[23] to the 3D case. An efficient extension of the Corner table to tetrahedral
meshes has been recently proposed in [11]. In [6], we have proposed a compact
and scalable data structure for arbitrary 3-dimensional simplicial complexes
embedded in the 3-dimensional Euclidean space, called the Non-Manifold In-
dexed data structure with Adjacencies (NMIA), which extends the indexed
data structure with adjacencies to arbitrary complexes.



6 Leila De Floriani, Annie Hui, Daniele Panozzo, and David Canino

An alternative approach to the design of non-manifold data structures con-
sists of decomposing a non-manifold object into simpler and more manage-
able parts [7]. Such techniques deal with the decomposition of the boundary
of a regular object into two-manifold parts, and all of them are for cell com-
plexes. The representation in [21] deals with non-regular objects as well. In
[12], we have proposed a data structure for simplicial 3-complexes, called the
Double Level Decomposition (DLD) data structure, based on a decomposition
for 3-dimensional non-manifold and non-regular objects into nearly manifold
components. The DLD is a two-level representation in which the higher level
encodes the decomposition, and the lower level encodes each component as
an indexed data structure with adjacencies. We have shown that the DLD
has similar performances as the NMIA data structure. Unfortunately, it is
more complex to update, since the decomposition of the complex needs to be
reconstructed at each update.

4 The Incidence Simplicial data structure

In this section, we introduce a new dimension-independent data structure
for representing Euclidean simplicial complexes in arbitrary dimensions, that
we call the Incidence Simplicial (IS) data structure. The IS data structure
encodes all the simplices of a d-dimensional simplicial complex Σ embedded
in the n-dimensional Euclidean space (with d ≤ n) and the following relations:

• the boundary relation Rp,p−1(σ) for each p-simplex σ, where 0 < p ≤ d;
• the partial coboundary relation Rp,p+1(σ), denoted as R∗

p,p+1(σ), for each
p-simplex σ, with 0 ≤ p < d: it consists of one arbitrarily selected (p + 1)-
simplex for each connected component in the link of σ.

The IS data structure stores the orientation of the simplices forming it. Given
a p-simplex σ generated by the ordered set of vertices V = [v0, . . . , vp], a face
λi of σ is expressed as λi = [v0, . . . , v̂i, . . . , vp], where we discard the vertex vi

with i = 0, . . . , p.
In general, the partial coboundary relation R∗

d−1,d(σ) is the same as the
coboundary relation Rd−1,d(σ) for each (d−1)-simplex σ. If the domain of
Σ is a manifold, then R∗

p,p+1(σ) contains just one (p+1)-simplex since the
link of σ consists of one single connected component. When d = n, any d-
dimensional simplicial complex is a pseudo-manifold in the d-dimensional Eu-
clidean space. Consequently, every (d−1)-simplex is shared by at most two
d-simplices. Fig. 1 shows two examples of partial coboundary relations in the
IS data structure. In Fig. 1(a), the link of vertex v consists of two connected
components, as shown in Fig. 1(b). Thus, partial coboundary relation R∗

0,1(v)
consists of {we, e}, where e is an edge of triangle df . In Fig. 1(c), the link of
an edge e (shown in Fig. 1(d)) is composed of three connected components
corresponding to the triangle df and to the tetrahedra t1 and t2, incident in e.
Thus, the partial coboundary relation R∗

1,2(e) consists of just three elements,
namely {df, f1, f2}, where f1 is a face of t1 and f2 is a face of t2.



A Dimension-Independent Data Structure for Simplicial Complexes 7

t
df

e

we v v

f1 2f

2t1v

2v

1t

df e e

(a) (b) (c) (d)

Fig. 1. (a) An example of a non-manifold vertex v, whose link is shown in (b) with
thick lines. (c) An example of a non-manifold edge e, whose link is shown in (d).

5 Implementation of the IS data structure

In the IS data structure describing a simplicial d-complex Σ, all simplices
of the same dimension p (with 0 ≤ p ≤ d) are stored in a dynamic array,
that we call SimplexesContainer, where each location stores a simplex. The
SimplexesContainer array supports a garbage collector mechanism and, thus,
update operations (such as simplex insertion or removal).

Each p-simplex σ has an unique identifier in the IS data structure, formed
by the pair (p, i), where p is the dimension of σ and i is the position of σ in
the SimplexesContainer where it is stored. This identifier is called Simplex-
Pointer and allows accessing a simplex in constant time. A flag is associated
with each simplex for marking it as visited during traversal algorithms. Some
application-dependent attributes, like Euclidean coordinates and field values,
can be associated to each simplex.

In order to encode the simplex orientation, we order the list of vertices
in the simplicial complex Σ according to the lexicographic order on their
identifiers. Given two vertices vi and vj , respectively identified by the Sim-
plexPointers (0, i) and (0, j), then we say that vi < vj if and only if i < j.
Consequently, the orientation of the simplices is imposed by the input list of
vertices in a simplicial complex and it must be enforced when building the
data structure (see Sect. 6).

For each p-simplex σ, we store boundary relation Rp,p−1(σ). We use an
array of dimension p+1, where each element stores the index of a (p−1)-face in
the corresponding SimplexesContainer array. We also encode the orientation
of the simplex boundary. The index of a face λi of a p-simplex σ is stored as
the i-th element in boundary relation Rp,p−1(σ). Recall that a face λi is the
simplex defined by all the vertices of σ with the exception of vertex vi, and
that a face λi precedes a face λj in Rp,p−1(σ) if and only vertex vi precedes
vertex vj in the lexicographic order of the vertices of Σ.

For each p-simplex σ, we also store partial coboundary relation R∗
p,p+1(σ),

formed by one arbitrarily-selected (p + 1)-simplex for each connected compo-
nent in the link of σ. We use a variable-sized array, where each element stores
the index of the coboundary simplex in the corresponding SimplexesContainer.

In what follows, we evaluate the storage cost of the IS data structure
representing a simplicial d-complex Σ. We consider only the cost of encoding



8 Leila De Floriani, Annie Hui, Daniele Panozzo, and David Canino

the topological information and we assume that both indices and pointers are
described through an integer value. In our analysis, we denote:

• the number of p-simplices in Σ (where 0 ≤ p ≤ d) as np;
• the total number of connected components in the link of a simplex σ (where

dim(σ) < d) as k(σ);
• the total number of connected components summed over the links of all

the p-simplices in Σ as Kp =
∑

σ|dim(σ)=p k(σ) with 0 ≤ p ≤ d.

In order to encode all the p-simplices, np pointers to the records describing
the simplices and a pointer for each SimplexesContainer are required. This
results in d + 1 +

∑
p np integer values, with 0 ≤ p ≤ d. For each p-simplex

(with 0 < p ≤ d), there are p + 1 simplices of dimension p − 1 in Rp,p−1(σ).
Thus, we need

∑
(p + 1)np integer values in order to store the boundary

relations for all simplices in Σ. Moreover, for each p-simplex (with 0 ≤ p <
d), there are k(σ) simplices of dimension p + 1 in R∗

p,p+1(σ). Thus, we need∑
Kp integer values in order to store all partial coboundary relations for all

simplices in Σ. In summary, the storage cost of the IS data structure is equal
to d + 1 +

∑
0≤p≤d np +

∑
0<p≤d(p + 1)np +

∑
0≤p<d Kp.

If the simplicial complex Σ is manifold, then we obtain a more compact
representation for all partial coboundary relations, while the storage cost for
the simplices and for all boundary relations does not change. For all the sim-
plices σ such that dim(σ) < d − 1, then k(σ) = 1, while k(σ) ≤ 2 for all
the (d − 1)-simplices. The above formula in the case of a manifold simplex
becomes d + 1 +

∑
0≤p≤d np +

∑
0<p≤d(p + 1)np + 2nd−1 +

∑
0≤p≤d−2 np.

6 Building an IS data structure

The most common exchange format for a d-dimensional simplicial complex
Σ consists of a collection of top simplices described by their vertices. This
representation is known as a soup of top simplices. In this section, we describe
how to generate the IS data structure from such representation.

The input format provides the list of the vertices of the simplicial complex
Σ. Each top p-simplex of Σ is described by the indexes of its (p + 1) vertices
in the input vertex list. The orientation of the simplices in Σ is well defined
by the input vertices, as described in Sect. 5, since a vertex is identified by its
position in such list. Since a soup of simplices describes only the top simplices,
we first need to generate all the simplices in Σ and to establish the topological
relations among them. This is achieved in four steps by analyzing all the p-
simplices in decreasing order of their dimension:

1. For each p-simplex σ, all the p+1 faces σi of dimension p−1 are generated
and stored in an auxiliary data structure. Each face λi is defined by all
the vertices of σ with the exception of the vertex in position i.



A Dimension-Independent Data Structure for Simplicial Complexes 9

2. All the (p−1)-simplices generated at step 1 are sorted by lexicographic
order of their vertices. In this way, duplicated simplices are removed. Each
simplex σ is stored in the corresponding SimplexesContainer array and is
given a unique identifier, i.e., its SimplexPointer.

3. All the (p−1)-faces λi of a p-simplex σ are considered in order to com-
pute the boundary relation Rp,p−1 and the complete coboundary relation
Rp−1,p. The identifier of σ is added to the coboundary relation Rp−1,p(λi),
while the identifier of λi is stored in the i-th position in the boundary re-
lation Rp,p−1(σ).

4. Partial coboundary relation R∗
p−1,p(σ) is computed for each (p−1)-simplex

σ from the corresponding complete coboundary Rp−1,p(σ) relation, as
detailed below.

The computation of the partial coboundary relation of a p-simplex σ in Step
4 is based on the topological information available in the intermediate struc-
ture obtained at Step 3, i.e., boundary relations Rp,p−1(σ) and coboundary
relations Rp,p+1(σ), for each p-simplex σ.

For a p-simplex σ, with p < d−1, we identify the connected components of
the link of σ and we encode a (p+1)-simplex incident in σ for each component
of the link. Fig. 2(a) shows an example of the star of a vertex v, where there
are two connected components in the link. We consider the graph, that we call
the star-graph of σ, in which the nodes are the simplices in the star of σ and
the arcs correspond to the boundary Rp,p−1 and coboundary Rp,p+1 relations
between the simplices in the star, restricted to the nodes in the star-graph.
Figs. 2(b) and 2(c) show the boundary and coboundary arcs of the star-
graph associated with vertex v (see Fig. 2(a)). The two sets of arcs are shown
separately, for the sake of clarity. It can be easily seen that the connected
components of the link of a p-simplex σ are the same as the biconnected
components of the star-graph. For instance, the star-graph of vertex v in Fig.
2 has two biconnected components. We also call the nodes in the star-graph
corresponding to j-simplices nodes at level j.

In order to identify all biconnected components in the star-graph, we tra-
verse the nodes belonging to levels (p + 1) and (p + 2) in the star-graph, by
using the arcs corresponding to relations Rp,p+1, Rp+1,p+2 and Rp+2,p+1. We
attach a unique label to each biconnected component. We start the traversal
from an unmarked node representing a (p+1)-simplex τ incident in σ and we
assign node τ to a new component by marking it with a new label. For each
node representing a (p+2)-simplex θ in Rp+1,p+2(τ), we retrieve the nodes
corresponding to the (p+1)-simplices in its boundary and we continue the
traversal. In this way, all the nodes corresponding to the (p+1)-simplices µ
in Rp+2,p+1(θ), that are incident at σ, are marked with the same label. The
graph traversal is recursively repeated for all nodes corresponding to simplices
in Rp+1,p+2(µ) until all nodes associated with the (p+1)-simplices incident
at σ and belonging to the same biconnected component of the star-graph are
visited. Then, for each biconnected component in the star-graph, one (p+1)-



10 Leila De Floriani, Annie Hui, Daniele Panozzo, and David Canino

e5e1

e4
f 3

f 1 e2

f 2

e3

v
e1 e2 e3 e4 e5

f 2 f 3f 1

v

e1 e2 e3 e4 e5

f 2 f 3f 1

v

(a) (b) (c)

e1 e2 e3 e4 e5

f 2 f 3f 1

v

e1 e2 e3 e4 e5

f 2 f 3f 1

v

(d) (e)

Fig. 2. The topological relations of simplices in the star of vertex v encoded as a
star-graph: (a) the star of vertex v; (b) the boundary relations R1,0 and R2,1; (c)
the coboundary relations R0,1 and R1,2 computed as intermediate results in the IS
construction; (d) a traversal of one component in the star of v by using only the
relations R0,1, R1,2 and R2,1; (e) a traversal of the other component in the star of v.

simplex is selected as an element of R∗
p,p+1(σ). Fig. 2(d) shows the traversal

of one biconnected component of the star-graph of vertex v for the complex
depicted in Fig. 2(a), while Fig. 2(e) shows the traversal of the other bicon-
nected component in the same star-graph. We note that we do not need to
compute the complete star-graph of σ, but only the nodes at levels (p + 1)
and (p + 2) and their boundary and coboundary arcs in the star-graph.

We can evaluate the time complexity of the IS construction as follows.
At step 1, at any level p, the total number of (p−1)-simplices is (p+1) · np,
where np is the number of p-simplices in complex Σ. Thus, the creation of the
(p−1)-simplices is linear with respect to the number of p-simplices. The time
required for sorting all the (p−1)-simplices at step 2 is O(nplog(np)). The
computation of boundary and coboundary relations at step 3 requires time
linear in the number of p-simplices, since boundary relations are constant.
At step 4, the traversal of the star-graph of a simplex σ visits every arc and
every node of the star-graph exactly once. Each q-simplex is in the stars of
(q+1) simplices of dimension (q−1) and in the stars of (q+2)·(q+1)

2 simplices of
dimension (q−2). Thus, the computation of partial relations for all (q − 2)-
simplices has time complexity proportional to (q+2)·(q+1)

2 nq + (q+1)nq, which
is O(nq).



A Dimension-Independent Data Structure for Simplicial Complexes 11

7 Retrieving Topological Relations

7.1 Retrieving Boundary Relations

All boundary relations Rp,p−1 are directly encoded in the IS data structure,
while boundary relations Rp,q with q < p can be easily retrieved through
relations Rp,p−1, Rp−1,p−2, . . ., Rq+1,q. For instance, the vertices of a tetrahe-
dron σ, i.e., R3,0(σ), are retrieved by applying R3,2(σ), then R2,1(τ), for each
triangle τ in R3,2(σ), and then R1,0(γ), for each edge γ in R2,1(τ).

The time complexity of this process is equal to Πr=q+1,p+1c, where c is
a constant. This quantity is bounded by a constant which depends on the
dimension p of the simplex and on the dimension q of its faces. For instance,
retrieving Rd,0(σ) relation requires O((d+1)!) time.

7.2 Retrieving Coboundary Relations

Coboundary relation Rd−1,d(σ) for each (d−1)-simplex σ is directly encoded
in the IS data structure, since R∗

d−1,d(σ) is the same as Rd−1,d(σ). Since
only partial coboundary relations are encoded in the IS data structure, the
challenge is to retrieve the complete coboundary relations efficiently.

The q-simplices incident in a p–simplex σ are either top simplices or faces
of top simplices in the star of σ having dimension greater than q. Thus, in
order to compute the Rp,q(σ) relation, we need to retrieve the top simplices
of dimensions q and above in the star of σ. This because all q-simplices that
are faces of higher-dimensional simplices incident in σ can only be retrieved
by considering the boundary simplices of the top simplices incident in σ.

For a p-simplex σ, we consider the graph describing the topological rela-
tions encoded in the IS data structure among the simplices in the star of σ.
We call this graph the IS star-graph. The nodes of the IS star-graph are the
simplices in the star of σ, while the arcs represent the boundary and partial
coboundary relations between such nodes encoded in the IS data structure.
Fig. 3(a) shows an example of the star of a vertex v, while Figs. 3(b) and 3(c)
show the arcs of the IS star-graph representing the boundary and the partial
coboundary relations for this complex, respectively.

Since the retrieval algorithm performs a breadth-first traversal of the IS
star-graph, each node and each arc are visited exactly once. The number of
arcs is linear in the number of nodes in the IS star-graph since each simplex
is bounded by a constant number of simplices. Moreover, the total number of
simplices in the star of a simplex is linear in the number of top simplices in the
star. Thus, the time complexity of the algorithm for retrieving coboundary
relation Rp,q(σ) is linear in the number of top simplices in the star of σ and,
thus, it is local.

Fig. 4 shows how the traversal of the star of vertex v (from the example
of Fig. 3(a)) is performed for retrieving R0,1(v). The traversal starts from v
and it is initialized by using R∗

0,1(v), which leads to edge e2. Through partial



12 Leila De Floriani, Annie Hui, Daniele Panozzo, and David Canino

e1

e2

e3

e4

e5

e6

t 2

t 1

f 1

f 2

f 3

f 4

f 5

df 1

f 6

= (1,2,4)
= (1,2,3)

= (1,3,4)
= (1,5,6)
= (1,5,7)
= (1,6,7)

= (1,2,3,4) = (1,2)
= (1,3)
= (1,4)
= (1,5)
= (1,6)
= (1,7)
=1v

= (1,5,6,7)

= (1,4,5)1

4
3

2

65

7

(a)

f 2

e3e2e1 e4 e6e5

f 1 f 3 f 5 f 6

t 1 t 2

f 4df1

v

f 2

e3e2e1 e4 e6e5

f 1 f 3 df1 f 5

t 1 t 2

f 4 f 6

v

(b) (c)

Fig. 3. Example (part 1) of retrieving R0,1(v) through a traversal of the star of
vertex v using boundary and partial coboundary relations encoded by the IS: (a) the
star st(v) of a vertex v; (b) boundary relations encoded by the IS among simplices in
st(v); (c) partial coboundary relations encoded by the IS among simplices in st(v).

coboundary relations R∗
1,2(e1) and R∗

2,3(f1), tetrahedron t1 is visited (as shown
in Fig. 4(a)). Through boundary relation R3,2(t1), all faces of t1 are visited.
Similarly, all the edges of faces f1, f2 and f3 are visited through their boundary
relations R2,1 (see Fig. 4(b)). Partial coboundary relation R∗

1,2(e3) of edge e3

leads to dangling-face df1. Boundary relation R2,1(df1) for df1 leads to edge e4

(as shown in Fig. 4(c)). Through edge e4, all the faces and edges of tetrahedron
t2 are visited in a similar fashion as those of tetrahedron t1 (see Fig. 4(d)).
At the end of the traversal, all the edges that are in the coboundary relation
R0,1(v) are retrieved.

7.3 Retrieving Adjacency Relations

Adjacency relation Rp,p(σ) for a p-simplex σ with p > 0, is simply retrieved
by first extracting all the faces τ in the boundary relation Rp,p−1(σ) and then
retrieving coboundary relation Rp−1,p(τ) for each τ . If p = 0, then adjacency
relation R0,0(v) for a vertex v is obtained by first retrieving the set of edges
in coboundary relation R0,1(v), and then retrieving the other extreme vertex
of each edge e in R0,1(v) through boundary relation R1,0(e).

For p > 0, the running time of the algorithm for retrieving Rp,p(σ) is
dominated by the time required to retrieve the coboundary relations for the



A Dimension-Independent Data Structure for Simplicial Complexes 13

f 2

e3e2e1 e4 e6e5

f 1 f 3 f 5 f 6

t 1 t 2

f 4df1

v

f 2

e3e2e1 e4 e6e5

f 1 f 3 f 5 f 6

t 1 t 2

f 4df1

v

(a) (b)

f 2

e3e2e1 e4 e6e5

f 1 f 3 f 5 f 6

t 1 t 2

f 4df1

v

f 2

e3e2e1 e4 e6e5

f 1 f 3 f 5 f 6

t 1 t 2

f 4df1

v

(c) (d)

Fig. 4. Example (part 2) of retrieving R0,1(v) through a traversal of the star of
vertex v using boundary and partial coboundary relations encoded by the IS: (a) to
(d) are four stages of the traversal of st(v).

(p−1)-faces of σ. Thus, the complexity of the algorithm is linear in the total
number of top simplices incident at the (p− 1)-faces of σ. Similarly, the time
complexity of the algorithm for retrieving R0,0(v) is linear in the number of
top simplices incident at vertex v.

8 Analysis and Comparisons

8.1 Comparison with the Incidence Graph

The Incidence Graph (IG) [10] stores all simplices and the same boundary
relations as the IS data structure, but it encodes all coboundary relations of
consecutive index Rp,p+1. In our tests, we have implemented the incidence
graph for simplicial complexes: in this case, the storage cost of the IG is equal
to d+1+

∑
0≤p≤d np+2

∑
0<p≤d(p+1)np, since encoding coboundary relations

Rp,p+1 requires the same space as encoding boundary relations Rp,p−1. Thus,
the incidence graph occupies

∑d−1
p=1(p + 1)np −

∑d−2
q=0(κq) integers more than

the IS data structure, where κ(σ) is the total number of connected components
in the link of a simplex σ and κp =

∑
dim(σ)=p κ(σ), for 0 ≤ p < d is the total

number of connected components summed over the links of all p-simplices in
Σ. The above difference is maximized for manifold complexes. In this case,



14 Leila De Floriani, Annie Hui, Daniele Panozzo, and David Canino

κq = nq and thus such difference becomes (d + 1)nd +
∑d−1

q=1 qnq − n0. Fig. 5
provides an example where the star of a vertex v is a manifold 3-complex. In
this case, the incidence graph encodes all the seven edges incident at v, while
the IS data structure encodes only edge e. The difference between the IG and
the IS data structures is minimum when only (q +1)-simplices are incident at
all q-simplices and in this case κq = (q + 2)nq+1. For example, if the complex
is formed only by edges, then only relations R0,1 and R1,0 are encoded. In this
case, the IG and the IS data structures have the same storage cost.

v

e

v

(a) (b)

Fig. 5. A comparison between R0,1(v) and R∗
0,1(v) in the manifold case: (a) the IG

encodes all the edges that are incident at v, while (b) the IS encodes only edge e in
the star of v.

Retrieving boundary relations is performed in the same way on the IG and
on the IS data structure, and requires constant time. Retrieving coboundary
relation Rp,q(σ), with p < q + 1, from the IS data structure requires time
linear in the number of top simplices in the star of σ, as shown in Sect. 7.2.
In the IG, coboundary relation Rp,r(γ) (p < r) is obtained by retrieving the
encoded coboundary Ri,i+1 relations of all the i-cells for i = p, . . . , r − 1
in the star of γ. The retrieval of such relations can be performed in time
linear in the number of involved cells. Thus, such algorithm is always optimal.
In the case of simplicial 2- and 3-complexes, coboundary relations can be
retrieved in optimal time from both data structures. In the case of simplicial
d–complexes with d > 3, coboundary relations can be retrieved in optimal time
only from the IG. For both the IS data structure and the IG, the time required
for retrieving adjacency relations depends on the retrieval of boundary and
coboundary relations. In Sect. 8.2 we present some comparisons between the
IS data structure and 2D and 3D instances of the IG.

8.2 Comparison with dimension-specific data structures

In this subsection, we compare the IS data structure with dimension-specific
data structures proposed for 2-dimensional and 3-dimensional simplicial com-
plexes. For the sake of brevity, we do not compare with data structures which
are specific for manifold complexes.

In the 2-dimensional case, we consider the Directed Edge (DE) [3] and
the Triangle-Segment (TS) [8] data structures. The DE data structure is an
edge-based data structure extending to the non-manifold case the half-edge



A Dimension-Independent Data Structure for Simplicial Complexes 15

data structure [18], proposed for 2-dimensional cell complexes with a mani-
fold domain. We have shown in [7] that the DE data structure is the most
space-efficient data structure among edge-based ones for encoding simplicial 2-
complexes. The TS data structure is an adjacency-based data structure which
extends the indexed data structure with adjacencies to arbitrary simplicial
2-complexes embedded in the 3-dimensional Euclidean space. The DE data
structure encodes edges and vertices explicitly and triangles implicitly. The
TS data structure encodes only the vertices and the top simplices of the com-
plex, i.e., wire-edges and triangles. The IG and the IS data structure encode
all simplices in the input complex. In this case, topological relations can be re-
trieved in optimal time, i.e., in time linear in the number of output simplices,
from such data structures.

In [7], we have compared the DE, the TS and the 2D instance of the IG
data structures on several complexes. In accordance with our results, edge-
based data structures require more space than the 2D instance of the IG. For
example, the DE data structure is 1.3 to 1.5 times larger than the IG. Our
experiments on the same sets of complexes have shown that the IG is about
1.25 the size of the IS data structure. The specific results are not reported
here for brevity.

We have also compared the IS data structure and the IG with the Non-
Manifold Indexed data structure with Adjacencies (NMIA) [6] for simplicial
3-complexes embedded in the 3-dimensional Euclidean space. The NMIA data
structure is an adjacency-based data structure which extends to the non-
manifold domain the indexed data structure with adjacencies. The extension is
performed by encoding the multiple connected components of the star at non-
manifold vertices and non-manifold edges implicitly. The NMIA data structure
encodes only vertices and top simplices in the input simplicial complex. Table 1
shows the results of the comparison with the NMIA data structure and the 3D
instances of the IG and of the IS data structure. Columns n0, n1, n2 and n3

show the number of vertices, edges, faces and tetrahedra, while columns nt
1 and

nt
2 provide the number of wire-edges and dangling faces in the input model.

The last three columns provide the storage cost of these data structures.

Table 1. The storage costs required by the NMIA, the IG and the IS data structures
in order to encode 3D non-manifold models.

Data set n0 n1 n2 n3 nt
1 nt

2 NMIA IG IS

Bucket 53 167 160 48 6 32 591 2012 1105
Wheel 402 2093 2728 1148 96 32 10.2k 33.9k 17.7k
Ballon 1108 3913 3616 856 64 1632 13.1k 44.2k 23.4k
Flasks 1301 6307 8465 3455 0 460 30.4k 104k 53.2k
Teapot 4658 17.9k 17.0k 5666 2944 3930 73.8k 219k 120k

In this case, the NMIA data structure is the most compact one as it encodes
only top simplices and vertices explicitly. Thus, it is not suitable for appli-



16 Leila De Floriani, Annie Hui, Daniele Panozzo, and David Canino

cations requiring explicit encoding of all simplices. The incidence graph is at
least three times the size of the NMIA data structure, because it encodes all
simplices and a large number of incidence relations. The IS data structure is
more compact than the IG (which uses about 1.38 times as much storage as
the IS) because it only encodes a subset of coboundary relations.

All topological relations can be retrieved in optimal time from the IS
data structure and from the IG. Coboundary relations R1,3 and R0,3 can be
retrieved from the NMIA data structure in time linear in the number of top
simplices incident at an edge or at a vertex. Thus, they are not optimal. All
the other relations can be extracted from the NMIA data structure in optimal
time.

9 Concluding Remarks

We have presented the Incidence Simplicial (IS) data structure, a new
dimension-independent data structure for representing d-dimensional simpli-
cial complexes in the n-dimensional Euclidean space. The IS data structure
has the same representation power as the widely-used incidence graph, but it is
more compact. Furthermore, the IS data structure has the same performances
in traversal and manipulation algorithms of the IG. We have presented algo-
rithms for building the IS data structure from a soup of top simplices and for
retrieving all topological relations. We have also compared the IS data struc-
ture with the incidence graph and with dimension-specific data structures,
also on the basis of an experimental evaluation of their storage costs.

We are developing the IS Library, a robust and effective implementation of
the IS data structure. This platform-independent library, written in C++, will
be distributed in the public domain. Currently, the IS library contains methods
for building the IS data structure from a soup of simplices, as described in
Sect. 6, and methods for navigating the data structure by extracting boundary,
coboundary and adjacency relations, as described in Sect. 7. All the internal
data structures are already suitable for supporting update operations. We
have designed and developed an implementation of the vertex-pair collapse
update operator [22], which we are currently testing.

A common issue in representing and manipulating non-manifold objects
is the availability of large-size simplicial representations for describing such
objects. Their complexity can easily exceed the capability of computational
tools for analyzing them. In these cases, adaptively simplified meshes, i.e.,
simplicial complexes in which the level of detail varies in different parts of the
object they describe, are often required. On the other hand, accurate mesh
simplification algorithms are too time consuming to be performed on-line.
Thus, a multi-resolution model, which encodes the modifications performed by
a simplification algorithm in a compact representation, is an effective solution.
Dimension-independent non-manifold representations can be integrated with



A Dimension-Independent Data Structure for Simplicial Complexes 17

a multi-resolution framework, giving rise to a powerful tool for modeling non-
manifold objects at variable resolutions.

A natural way to deal with non-manifold objects consists of decomposing
them into nearly manifold components by cutting at non-manifold simplices.
We are developing a decomposition algorithm based on the IS data struc-
ture and we are planning to use the resulting decomposition as the basis
for performing geometric reasoning on non-manifold shapes. In particular, we
are interested in computing topological invariants from the decomposition as
signatures for efficient shape analysis and retrieval and in identifying non-
manifold form features based on the structure of the decomposition.

Acknowledgements

This work has been partially supported by the MIUR-FIRB project SHALOM
under contract number RBIN04HWR8, and by the National Science Founda-
tion under grant CCF-0541032.

References

1. M. Agoston. Computer Graphics and Geometric Modelling. Springer, 2005.
2. E. Brisson. Representing geometric structures in d dimensions: topology and

order. In Proc. of the 5th ACM Symp. on Computational Geometry, pages 218–
227. ACM Press, 1989.

3. S. Campagna, L. Kobbelt, and H.-P. Seidel. Directed Edges - a scalable repre-
sentation for triangle meshes. Jour. of Graphics Tools, 3(4):1–12, 1998.

4. A. Castelo, H. Lopes, and G. Tavares. Handlebody representation for surfaces
and Morse operators. In J. Warren, editor, Proc. on Curves and Surfaces for
Computer Vision and Graphics III, SPIE, pages 270–283, Boston, 1992.

5. L. De Floriani, D. Greenfieldboyce, and A. Hui. A data structure for non-
manifold simplicial d-complexes. In L. Kobbelt, P. Schroder, and H. Hoppe,
editors, Proc. of the 2nd Eurographics Symp. on Geometry Processing, pages
83–92, Nice, France, 8–10 July 2004.

6. L. De Floriani and A. Hui. A scalable data structure for three-dimensional
non-manifold objects. In L. Kobbelt, P. Schroder, and H. Hoppe, editors, Proc.
of the 1st Eurographics Symp. on Geometry Processing, pages 72–82, Aachen,
Germany, 23–25 June 2003.

7. L. De Floriani and A. Hui. Data structures for simplicial complexes: an analysis
and a comparison. In M. Desbrun and H. Pottmann, editors, Proc. of the 3rd

Eurographics Symp. on Geometry Processing, pages 119–128, Vienna, Austria,
4–6 July 2005.

8. L. De Floriani, P. Magillo, E. Puppo, and D. Sobrero. A multi-resolution topo-
logical representation for non-manifold meshes. CAD Journal, 36(2):141–159,
February 2004.

9. D. Dobkin and M. Laszlo. Primitives for the manipulation of three-dimensional
subdivisions. Algorithmica, 5(4):3–32, 1989.



18 Leila De Floriani, Annie Hui, Daniele Panozzo, and David Canino

10. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, 1987.
11. T. Gurung and J. Rossignac. SOT: a compact representation for tetrahedral

meshes. In Proc. of the SIAM/ACM Joint Conference on Geometric and Phys-
ical Modeling, pages 79–88, San Francisco, USA, 2009.

12. A. Hui, L Vaczlavik, and L. De Floriani. A decomposition-based representation
for 3D simplicial complexes. In Proc. of the 4th Eurographics Symp. on Geometry
Processing, pages 101–110, Cagliari, Italy, June 2006.

13. M. Kallmann and D. Thalmann. Star Vertices: a compact representation for
planar meshes with adjacency information. Jour. of Graphics Tools, 6(1):7–18,
2001.

14. M. Lage, T. Lewiner, H. Lopes, and L. Velho. CHF: a scalable topological
data structure for tetrahedral meshes. In Proc. of the 18th Brazilian Symp. on
Computer Graphics and Image Processing, pages 349–356, 2005.

15. S. H. Lee and K. Lee. Partial-entity structure: a fast and compact non-manifold
boundary representation based on partial topological entities. In Proc. of the 6th

ACM Symp. on Solid Modeling and Applications, pages 159–170, Ann Arbor,
USA, June 2001. ACM Press.

16. P. Lienhardt. Topological models for boundary representation: a comparison
with n-dimensional generalized maps. CAD Journal, 23(1):59–82, 1991.

17. H. Lopes and G. Tavares. Structural operators for modeling 3-manifolds. In
Proc. of the 4th ACM Symp. on Solid Modeling and Applications, pages 10–18.
ACM Press, May 1997.

18. M. Mantyla. An Introduction to Solid Modeling. Computer Science Press, 1987.
19. S. McMains. Geometric Algorithms and Data Representation for Solid Freeform

Fabrication. PhD thesis, University of California at Berkeley, 2000.
20. A. Paoluzzi, F. Bernardini, C. Cattani, and V. Ferrucci. Dimension-independent

modeling with simplicial complexes. ACM Trans. on Graphics, 12(1):56–102,
1993.

21. S. Pesco, G. Tavares, and H. Lopes. A stratification approach for modeling
two-dimensional cell complexes. Computers and Graphics, 28:235–247, 2004.

22. J. Popovic and H. Hoppe. Progressive simplicial complexes. In Proc. of the
ACM Computer Graphics, pages 217–224. ACM Press, 1997.

23. J. Rossignac, A. Safonova, and A. Szymczak. 3D compression made simple:
Edge-Breaker on a Corner table. In Proc. of the Shape Modeling International,
Genova, Italy, May 2001. IEEE Computer Society.


