Manipulating Topological Decompositions of Non-Manifold Shapes

David Canino

Independent Researcher in Computer Science PhD. in Computer Science

canino.david@gmail.com

October 3, 2016

The Problem (Automatic Editing of a Decomposition) #1

The Starting Point

A (cell) complex Γ discretizes a *digital shape*, and may be:

- decomposed into the relevant components of any decomposition D(Γ), always computable (the Batch Approach);
- updated by an *editing operator* $u = (u^-, u^+)$. The resulting complex is $\Gamma_u = {\Gamma | u^-} \cup {u^+}$.

Objective of This Paper (the Interactive Approach)

Updating automatically $D(\Gamma)$ when applying an *editing operator* u on Γ .

This approach is always *computable*, and works in all cases (general solution)

BUT the relation between $D(\Gamma)$ and $D(\Gamma_u)$ is not known and exploited.

The Problem (Automatic Editing of a Decomposition) #2

In any case, the naive approach may be INEFFICIENT:

- an update u modifies only locally Γ (a local Region-Of-Influence, ROI);
- the components in D(Γ), related to the unchanged portions of Γ (NOT AFFECTED by u), may be reused directly in D(Γ_u);
- only the components of $D(\Gamma)$, related to the portions of Γ , modified by u (*AFFECTED* by u), are recomputed, modified, and added to $D(\Gamma_u)$.

Consequences

- no need to recompute D from scratch after every u (expensive);
- this task is performed even if at interactive rate, when reusing the components from D(Γ).

However ...

- a general solution *does not exist*;
- a solution depends on the *update u* and the *decomposition D*.

The Structural Models for the Non-Manifold Shapes #1

Manifold Condition at a Point p

Its neighborhood is locally *homeomorphic* to the *ball*, centered at *p*.

The Non-Manifold Shapes

- some non-manifold singularities, where the manifold condition is violated;
- several subcomponents of *different dimension*, often *(almost) manifold*.

Classic Approach (*cell complexes* in \mathbb{E}^d)

The *topological data structures* (mangroves):

- cells (vertices, edges, 2-cells, ...);
- the topological relations for each cell.

- De Floriani and Hui, 2005
- Botsch et. al., 2010
- Canino, 2012

The Structural Models for the Non-Manifold Shapes #2

Drawbacks (wrt non-manifolds)

- the non-manifold singularities are not exposed directly (not always recognizable, Nabutovski, 1996);
- the *subcomponents* are not exposed.

ONLY the *local connectivity* for a cell in a (non-manifold) shape

Mesh Repairing (Result=manifold)

- Falcidieno and Ratto, 1992
- Gueziec and Cardoze, 1998
- Rossignac et all., 1999
- Attene et all., 2009 / 2013

The Structural Model

- the *subcomponents* are exposed explicitly;
- the connections along the non-manifold singularities.

The *global structure* of a non-manifold shape

(Combinatorial) Stratifications

- Whitney, 1965
- Lopes et all., 1999
- De Floriani et all., 2003
- Pesco et all., 2004

The Manifod-Connected (MC-) decomposition #1

The Manifold-Connected (MC)- decomposition (De Floriani and Hui, 2007) is extended here to any cell d-complex Γ (initially for simplicial complexes).

Top k-cell γ (with $0 \le k \le d$)

Does not bound another cell in Γ .

MC-adjacent top k-cells γ' and γ''

They are the unique top cells in the star of a common (k-1)-face τ .

2-cells c_0 and c_1 are MC-adjacent

David Canino

The MC-path from γ to γ'

- a sequence of top *k*-cells, such that a pair of *consecutive* cells is *MC-adjacent*;
- all top *k*-cells in the MC-path are *MC-equivalent*.

The Manifod-Connected (MC-) decomposition #2

The *MC-connectivity* relation \sim_{MC} among top *k*-cells (equivalence relation) Here, $\gamma \sim_{MC} \gamma'$, iff γ and γ' are MC-equivalent (*always computable*).

It is the transitive closure of the MC-adjacency.

A more formal description (and more details) in the paper For more details, see *Canino*, 2012 - *Canino*, *De Floriani*, 2013

How and When an Update affects the MC-components

The Key Target in the Running Pipeline

- understanding how *modifying* any equivalence class $[\gamma]$ (wrt \sim_{MC}) when applying an *update* $u = (u^-, u^+)$;
- [γ] is affected by u, if it intersects the generalized neighborhood σ^h(u⁻) for any order h (minimum order h
 such that this happens).

The Generalized Neighborhood $\sigma^{h}(u^{-})$

 σ⁰(u⁻) ≡ all top cells in the star of vertices in u⁻;

•
$$\sigma^h(u^-) \equiv \sigma^0(\sigma^{h-1}(u^-)).$$

By construction,
$$\sigma^{\infty}(u^{-})\equiv \Gamma$$

How Updating the MC-decomposition

- Modifying the MC-decomposition \mathcal{MC}_{Γ} of a 2-complex Γ with:
 - V vertices (i.e., 0-cells), E edges (i.e., 1-cells), F polygons (i.e., 2-cells);
 - ▶ *R* connected regions and *L* hole loops (1-cycles).
- The Euler operators in Lee and Lee, 2001, satisfying the Euler formula:

$$V-E+F=R-L$$

- This forms a *basis* for all updates on cell 2-complexes + MC-decompositions.
- Exploiting the Compact MC-graph (see Canino and De Floriani, 2013), where every operation is efficient.
- Defined on any mangrove (see Canino, 2012) [nodes clustering]

Key Operation (Theoretical Validity)

- splitting and merging together the MC-paths of interest;
- \sim_{MC} is an equivalence relation, thus is *transitive*.

The MEV and the KEV Updates

The Make-Edge-Vertex (MEV) Update

- adds a new vertex v' to Γ ;
- adds a new top edge e = (v, v')
 between v' and an existing vertex v.

V=V+1, E=E+1

MC-components intersect $\sigma^0(v)$

MEV

KFV

Key Idea

- candidate [e] is merged with an existing [e'] in MC_Γ, iff a MC-adjacency occurs at v;
- otherwise, [e] is added, and [e'] may be (even) split.

Time complexity: O(1) [best] #top edges in [e'] (worst)

The *Kill-Edge-Vertex* (*KEV*) Update The *reverse* wrt the MEV update.

More details in the paper.

The MEL and the KEL Updates

The Make-Edge-Loop (MEL) Update

Completes a hole loop with a new top edge e = (v, v'), connecting vertices v and v'.

E=E+1, L=L+1

The hole loops are not relevant for \sim_{MC} . MC-components intersect $\sigma^0(v) \cup \sigma^0(v')$

MEL

KEL

Key Idea

- candidate [e] is merged with the existing MC-components in *MC*_Γ, iff a MC-adjacency occurs at v or/and v' (also both, up to 2 fusions);
- otherwise, [e] is added, and the existing MC-components may be (even) split.

The *Kill-Edge-Loop* (*KEL*) Update The *reverse* wrt the MEL update.

Time complexity: #top edges in the star of v and v'.

The MEJR, KESR, MVR and KVR Updates

The Make-Edge-Join-Region (MEJR) Update

Creates a new top edge $e = (v_1, v_2)$ between two existing vertices v_1 and v_2 in two distinct regions. The Kill-Edge-Split-Region (KESR) Update

Removes a top edge $e = (v_1, v_2)$, disconnecting two regions in Γ (connected only through e).

E=E-1, R=R+1

- Mutually reverse
- Similar to the MEL and KEL updates (without loops)

The Make-Vertex-Region (MVR) Update

Adds a new top vertex v, i.e., a new [v] to \mathcal{MC}_{Γ} (V = V + 1, R = R + 1).

The Kill-Vertex-Region (KVR) Update

Removes a top vertex v, i.e., an existing [v] from \mathcal{MC}_{Γ} (V = V - 1, R = R - 1).

E=E+1, R=R-1

The MFKL and the KFML Updates

The Make-Face-Kill-Loop (MFKL) Update

Fills the void, bounded by a hole loop $(e_i)_{i=1}^n$, with a new 2-cell γ

F=F+1, L=L-1

MC-components in $\bigcup_i \sigma^0(e_i)$

Time complexity: #2-cells in the star of all edges e_i in the hole loop

Key Idea

- candidate $[\gamma]$ is merged with the existing MC-components in \mathcal{MC}_{Γ} , iff a MC-adjacency occurs at e_i
- otherwise, [γ] is added, and the existing MC-components may be (even if) split

The *Kill-Face-Make-Loop* (*KFML*) Update

The *reverse* update wrt the MFKL update.

Other Updates

This forms a basis for manipulating \mathcal{MC}_{Γ} with any update.

MC-equivalent Meshings

Replacing a MC-path with another MC-path (with the same domain).

 \mathcal{MC}_{Γ} remains unchanged.

Collapsing a *p*-cell γ

Removing γ and one of its border (p-1)-faces.

- Template-based and Stellar Updates
- Delaunay/Voronoi Mesh Generation
- Automatic Retopology
- Merging/Splitting MC-adjacent cells
- 1-cell γ : KEV + KVR
- 2-cell γ : KFML + KEL

Collapsing an edge is an open problem - updates are propagated to the entire Γ .

Experimental Results

Applying *m* updates on Γ and \mathcal{MC}_{Γ} .

Average Running times (ms) on the non-manifold 2D shapes from http://ggg.disi.unige.it.

т	\mathcal{T}_m^N	\mathcal{T}_m^B	\mathcal{T}_m^I	$\mathcal{T}^{\mathcal{B}}_{\mathfrak{m}}$ / $\mathcal{T}^{\mathcal{I}}_{\mathfrak{m}}$
10 <i>K</i>	289.4 <i>K</i>	36	5.5	6.5
40 <i>K</i>	_	85	22	3.9
100 <i>K</i>	_	196	58	3.3
500 <i>K</i>	_	1.1K	372	3.9
1M	_	2.4 <i>K</i>	746 <i>K</i>	3
3 <i>M</i>	—	10.8 <i>K</i>	2.1 <i>K</i>	5.1
6 <i>M</i>	—	23.4 <i>K</i>	4.3 <i>K</i>	5.4

- \mathcal{T}_m^N : the *naive* approach
- \mathcal{T}_m^B : the *batch* approach
- \mathcal{T}_m^{\prime} : the *interactive* approach

۲	$\mathcal{T}_m^N > 10$	minutes after
	only 40 <i>K</i>	updates;

•
$$\mathcal{T}_m^B \approx 4 \times \mathcal{T}_m^I$$
 (on average).

Consequences

- \mathcal{T}_m^N is too high;
- *MC*_Γ could be built *interactively*.

Our implementations exploit the *Mangrove TDS Library* - http://mangrovetds.sourceforge.net

David Canino

The Future Work

These idea are the basis for a very large number of applications:

- the *random* and the *interactive manipulation* for a non-manifold shape and its MC-decomposition (*automatically*)
- improving the internal *meshing quality* of the MC-components (e.g., optimal for the 3D printing, but not only)
- improving the efficiency for computing the simplicial homology (*Constructive Homology Theory* by F. Sergeraert, see *Boltcheva, Canino, et. al., 2011*)
- extension to the higher dimensional shapes
- defining a multiresolution structural model for the non-manifold shapes

Main Consequence

- The internal meshing of the MC-components is *not mandatory*
- Generation at run-time, like the Catalogs, by Castelli Aleardi et. al., 2011

That's All (for Now). But I hope not ...

The source code of the implementations will be available as GPL v3 from:

- http://mangrovetds.sourceforge.net
- http://mangrovetds.github.io

distributed as an Extra Program of the Mangrove TDS Library (new version 3.0).

THANK YOU for YOUR ATTENTION!