Representing Simplicial Complexes with Mangroves

David Canino, Leila De Floriani

Department of Computer Science, Robotics, Bioengeneering, and Systems Engineering (DIBRIS), Universitá degli Studi di Genova, Italy

The Mangrove Topological Data Structure Framework

What we propose - The Mangrove TDS Framework

- Fast prototyping of topological data structures for simplicial complexes under the same API.
- Extensible and graph-based representations of connectivity information (mangroves).
- Implicit representations of those simplices, not directly encoded (ghost simplices).

We have designed several data structures with complementary properties including:

- the Incidence Simplicial (IS) data structure, De Floriani et all., IMR 2010
- the IA* data structure, Canino et all., SMI 2011

which are *efficient* for manipulating *non-manifolds* of any dimension (with pieces of *different dimensionality*), *Canino*, 2012 (PhD. Thesis)

Our C++ implementations are contained in the *Mangrove TDS Library*, released as GPL v3 software for the scientific community at

http://mangrovetds.sourceforge.net

Context & Motivation

Starting point

- Simplicial complexes are common in many applications (FEM, C&G, ...)
- Efficient representations for extracting and modifying their connectivity information

What we have?

Many topological data structures:

- Garimella, 2002 + course
- De Floriani and Hui, 2005 (survey)
- De Floriani et all., 2010
- Canino et all., 2011
- More references in our paper!

optimized for a specific task.

Main Issue

Not much attention towards *rapid prototyping* of topological data structures under the *same API*.

Context & Motivation (con'td)

Very few frameworks support rapid prototyping of representations:

	OpenMesh	OpenVolumeMesh	CGoGN	CGAL	Mangrove TDS
Types of shapes	cell	cell	cell	cell	simplicial/cell
Dimension of shapes	2	up to 3	any	any	any
Representation	OM	ÖVM	C-Maps	many	any
Extensibility	no	no	no	modules	yes
Non-manifolds	partially	yes	partially	yes	yes

Rapid prototyping is important in the manifacturing.

Rapid Prototyping Design Model

What do we want in this context?

Generic prototype of topological data structures:

- customized in order to simulate any topological representation efficiently (design)
- dynamically replaced at run-time (plugin) wrt any modeling need (optimization)
- well-defined and unique API (data hiding)
- short learning curve and easy-to-use.

Comparing Instructional Design Models*

Context & Motivation (con'td)

Advantages?

- Complete analysis of topological data structures within the same context
- Common basis for coherent and fair comparisons wrt efficiency of topological queries
- Simplification of programmers' work (unique API)
- No rewriting a program from scratch when replacing internal representations completely.
- Possibility to replace completely representations, not only few details.
- Simulations of representations without a relevant overhead.

This can be defined by exploiting topological relations for any simplicial (cell) complex:

- any domain, including non-manifolds
- pieces of different dimensionality
- any dimension (dimension-independent)

Representing the Connectivity Information

Key idea

Connectivity of simplices (vertices, edges, triangles,...) in any simplicial complex Σ (1-skeleton, tri, and tet meshes,...) is described by topological relations.

Topological relation $\sim_{k,m} (\sigma, \sigma')$

Let Σ^j be the collection of j-simplices in Σ , and $\sim_{k,m}\subseteq \Sigma^k\times \Sigma^m$, then:

Boundary relations

If σ' is a face of σ , e.g., $\sim_{2,0}$ $(\mathit{f}_{1},\mathit{v})$ or $\sim_{2,1}$ $(\mathit{f}_{3},\mathit{e}_{8})$

Co-boundary relations (incident simplices)

If σ is a face of σ' , e.g., $\sim_{0,2} (v, f_1)$ or $\sim_{1,2} (e_8, f_3)$

Adjacency relations

- $\sim_{k,k} (\sigma, \sigma')$, with $k \neq 0$, if σ and σ' shares a (k-1)-simplex
- ullet $\sim_{ exttt{0,0}} (\sigma,\sigma')$, if an edge connects σ and σ'

For instance, $\sim_{0,0} (v, v_3)$ or $\sim_{2,2} (f_1, f_3)$

Representing the Connectivity Information as a Graph

Key Idea

Connectivity information can be described as a *directed graph* $\mathcal{G}_{\Sigma} = \{\mathcal{N}_{\Sigma}, \mathcal{A}_{\Sigma}\}$ where:

- each node n_{σ} corresponds to a simplex σ
- each oriented arc $(n_{\sigma}, n_{\sigma'})$ corresponds to $\sim_{k,m} (\sigma, \sigma')$

Graph \mathcal{G}_{Σ} is *expensive* to be encoded, but it is our *generic prototype*!

Topological Data Structure \mathcal{M}_{Σ}

- Subset of simplices
- Subset of topological relations:
 - boundary relations
 - co-boundary relations
 - adjacency relations

Mangrove $\mathcal{G}_{\Sigma}^{\mathcal{M}}$

- Graph-based representation of \mathcal{M}_{Σ} (as above)
- **Spanning subgraph** of \mathcal{G}_{Σ} , formed by:
 - boundary graph
 - co-boundary graph
 - adjacency graph

Consequence

Representing any *topological data structure* $\mathcal{M}_{\Sigma} \equiv$ representing *mangrove* $\mathcal{G}_{\Sigma}^{\mathcal{M}}$, regardless:

- what simplices and topological relations are encoded in Mr
- the dimension and the type of domain

Everything is a mangrove!

Generic Encoding of Mangroves and Operations

Any *mangrove* $\mathcal{G}_{\Sigma}^{\mathcal{M}}$ is encoded by any *adjacency list* data structure for graphs (well known).

Encoding of Node $n_{\sigma} \equiv \text{simplex } \sigma$

- Unique topological entity to be encoded
- Endpoints of *arcs* in $\mathcal{G}_{\Sigma}^{\mathcal{M}}$ outgoing from n_{σ}
- Properties associated with nodes

Collection of Nodes (indices-based)

- Dynamic arrays, one for each collection of simplices in \mathcal{M}_{Σ}
- Garbage collector and safe iterators

This encoding satisfies requirements in Sieger & Botsch, IMR 2011.

Common API (at least)

Topological queries on any simplex σ :

- lacktriangle BOUNDARY faces of σ
- STAR simplices incident at σ
- lacktriangle ADJACENCY simplices adjacent to σ
- LINK boundary of STAR(σ), not incident at σ
- IS-MANIFOLD checking if σ is manifold are *breadth-first traversals* of $\mathcal{G}_{\Sigma}^{\mathcal{M}}$.

What we need for modeling \mathcal{M}_{Σ} ?

- Only the content of *mangrove* $\mathcal{G}_{\Sigma}^{\mathcal{M}}$
- Implementation of topological queries

Consequences (except some cases)

- No overhead for simulating M_Σ
- Transparent API (data hiding)
- Plugin

The IS data structure (De Floriani et all., IMR 2010)

The IS data structure (The IS-graph)

- Simplicial complexes with pieces of different dimensionality
- Dimension-independent
- All simplices are encoded
- Global mangrove

Immediate Boundary relations $\sim_{p,p-1}$ for any p-simplex

Co-boundary relations $\sim_{p,p+1}^*$ for any p-simplex

The IA* data structure (Canino et all., SMI 2011)

The IA* data structure (The IA*-graph)

- Extends the *Indexed data structure* to non-manifolds of any dimension
- Simplicial complexes with pieces of different dimensionality
- Only vertices and top simplices (no simplices incident at)
- Partial mangrove

Adjacency relations $\sim_{\rho,\rho}^*$ and $\sim_{\rho-1,\rho}^*$ for top simplices

Implicit Representations of Simplices

API Problem with the IA* data structure

- Not all simplices are encoded in M_Σ
- What's their representation in the API?

Solution

- Implicit representation of these simplices
- Simple and efficient in space and time

First attempt: Cell Tuples

- Based on the incidence graph (IG), Edelsbrunner, 1987 for d-complexes
- Maximal paths from vertices to top simplices in the IG
- Redundant connectivity information
- Length proportional to d, no scalable

Solving Drawbacks ...

- Adjacency relations are restricted to top simplices (recall)
- Quick connections among a simplex σ and top simplices incident at σ
- Avoiding complete traversals in the incidence graph

Ghost Simplices

Key Idea

- Any *p*-simplex σ is a *p*-face of an arbitrary top t-simplex σ' incident at σ
- Enumeration of simplices and faces of σ'

Definition

Always defined as a 4-tuple [t, i, p, j], where:

- t is the dimension of σ'
- *i* is the unique identifier of σ'
- p is the dimension of σ
- *j* is the local identifier of σ as *p*-face of σ'

Properties

- scalable to high dimensions
- one ghost simplex for each top simplex incident at σ (flights in sharing code)

Ghost simplex [3, 0, 1, 3] (in red) Ghost simplex [3, 0, 3, 0] is the top 3-simplex

Consequences

- Input and output of topological queries are ghost simplices
- New organization for topological queries

Ghost Simplices (cont'd)

New Organization of Topological Queries

- 1 retrieve all **top simplices** σ' incident at σ
- 2 retrieve *faces* of σ' involved in the query of interest (as *ghost simplices* wrt σ')

What we encode

For each dimension *t* of top simplices:

- incidence graph H_t describing topology of faces (ghost simplices) for a top t-simplex
- local indices j of faces stored in \mathcal{H}_t

Consequences

Faces of interest are retrieved by *breadth-first traversals* of \mathcal{H}_t

Co-boundary relations

Faces [3, x, 2, 1], [3, x, 2, 2], and [3, x, 3, 0] are incident at [3, x, 1, 3].

Using Ghost Simplices in our Mangrove TDS Library

Ghost simplices improves the *efficiency* of topological queries in the *IA** data structure:

The Mangrove TDS Library is a GPL v3 software: http://mangrovetds.sourceforge.net

Using Ghost Simplices ... (cont'd)

Overhead C^d for graphs \mathcal{H}_t

$$\sum_{t=2}^{p} \sum_{p=2}^{t} (p+1) {t+1 \choose p+1}$$

- does not depend on the number of top simplices
- much less than 1%

Storage costs of the IG, IS, and IA* data structures within our framework:

d	\mathcal{C}^{d}	s_0	s_d	S_{IA*}	$\mathcal{S}_{\mathit{IS}}$	${\cal S}_{IG}$
2	18	2.8 <i>M</i>	5.6 <i>M</i>	22.4M	38 <i>M</i>	44.8 <i>M</i>
3	74	1.4 <i>M</i>	4.2 <i>M</i>	19.6 <i>M</i>	68.6 <i>M</i>	92.1 <i>M</i>
4	224	0.7 <i>M</i>	2.7 <i>M</i>	14.9 <i>M</i>	104.3 <i>M</i>	149 <i>M</i>
5	596	0.3 <i>M</i>	1.4 <i>M</i>	9 <i>M</i>	123.6 <i>M</i>	188 <i>M</i>
6	1.5 <i>k</i>	0.1 <i>M</i>	0.7 <i>M</i>	5.3 <i>M</i>	143.1 <i>M</i>	222.6M
7	3.5 <i>k</i>	75 <i>K</i>	0.5 <i>M</i>	4.3 <i>M</i>	228 <i>M</i>	365.5 <i>M</i>
8	8.1 <i>k</i>	34 <i>K</i>	0.3 <i>M</i>	2.5 <i>M</i>	260 <i>M</i>	425 <i>M</i>

Generalization of the Sierpinski shape in high dimensions

Small *overhead* implies great *expressive power* and *compactness* in high dimensions.

Conclusions & Future Work

What we proposed - The Mangrove TDS Framework

- Fast prototyping of topological data structures for simplicial complexes under the same API.
- Extensible and graph-based representations of connectivity information (mangroves).
- Implicit representations of those simplices, not directly encoded (ghost simplices).

The Mangrove TDS Library, released as GPL v3 software for the scientific community at

http://mangrovetds.sourceforge.net

There is a lot of space and room for improvements:

- new plugins
- extensions to cell complexes (e.g., quad and hex meshes)
- new editing operators (homology-preserving and -modifying operators)
- applications in *high dimensions*
- distributed and parallel version
 - ..

Acknowledgements

We thank:

- anonymous reviewers for their useful suggestions
- the Italian Ministry of Education and Research (the PRIN 2009 program)
- the National Science Foundation (contract IIS-1116747)
- Prof. Vijay Natarajan, Indian Institute of Science, for the Sierpinski shape

These slides are available on http://www.disi.unige.it/person/CaninoD

Thank you much for your attention!