A Compact Representation for Topological Decompositions of Non-Manifold Shapes

David Canino, Leila De Floriani

canino,deflo@disi.unige.it

Department of Computer Science (DIBRIS), Universitá degli Studi di Genova, Italy

8th International Joint Conference on Computer Vision, Imaging, and Computer Graphics Theory and Applications

February 23, 2013

Manifold shapes (Topological Manifold)

Each neighborhood of every point *p* is homeomorphic to one connected component of a *ball*, centered at *p*.

ъ

ヘロト ヘロト ヘヨト ヘ

Manifold shapes (Topological Manifold)

Each neighborhood of every point *p* is homeomorphic to one connected component of a *ball*, centered at *p*.

-

- 4 E F

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

Image: A matrix

Properties

simple structure (*topology*)

David Canino, Leila De Floriani (DIBRIS)

(4) E (4) A (E)

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

Properties

- simple structure (topology)
- efficient representations

David Canino, Leila De Floriani (DIBRIS)

-

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

Image: A matrix

3 ×

Properties

- simple structure (topology)
- efficient representations
- many tools based on manifold shapes

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

Properties

- simple structure (topology)
- efficient representations
- many tools based on manifold shapes

But they are only a *subset* of all the possible shapes.

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

Image: A matrix

Properties

- simple structure (topology)
- efficient representations
- many tools based on manifold shapes

But they are only a *subset* of all the possible shapes.

Non-manifold Shapes

 non-manifold singularities, i.e., points at which the manifold condition is not satisfied

A B F A B F

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

Properties

- simple structure (topology)
- efficient representations
- many tools based on manifold shapes

But they are only a *subset* of all the possible shapes.

Non-manifold Shapes

- non-manifold singularities, i.e., points at which the manifold condition is not satisfied
- parts of different dimensions

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

Properties

- simple structure (topology)
- efficient representations
- many tools based on manifold shapes

But they are only a *subset* of all the possible shapes.

Non-manifold Shapes

- non-manifold singularities, i.e., points at which the manifold condition is not satisfied
- parts of different dimensions
- assembly of components (FEM analysis)

• • = • • = •

Image: Image:

Manifold shapes (Topological Manifold)

Each neighborhood of every point p is homeomorphic to one connected component of a *ball*, centered at p.

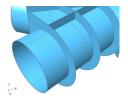
Properties

- simple structure (*topology*)
- efficient representations
- many tools based on manifold shapes

But they are only a *subset* of all the possible shapes.

Non-manifold Shapes

- non-manifold singularities, i.e., points at which the manifold condition is not satisfied
- parts of different dimensions
- assembly of components (FEM analysis)



Classical approach

 Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space

Classical approach

- Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space
- Represented by topological data structures:

Classical approach

- Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space
- Represented by topological data structures:
 - simplices (vertices, edges, triangles,...)

Classical approach

- Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space
- Represented by topological data structures:
 - simplices (vertices, edges, triangles,...)
 - topological relations for each simplex:

(I)

Classical approach

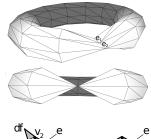
- Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space
- Represented by topological data structures:
 - simplices (vertices, edges, triangles,...)
 - topological relations for each simplex:
 - boundary, co-boundary, adjacency

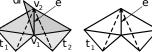
Image: Image:

Classical approach

- Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space
- Represented by topological data structures:
 - simplices (vertices, edges, triangles,...)
 - topological relations for each simplex:
 - boundary, co-boundary, adjacency
 - efficient extraction of topological queries

There is a large amount of research in the literature, see *De Floriani and Hui, 2005* and *Botsch et al., 2010*





• □ > • □ > • □ > •

Classical approach

- Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space
- Represented by topological data structures:
 - simplices (vertices, edges, triangles,...)
 - topological relations for each simplex:
 - boundary, co-boundary, adjacency
 - efficient extraction of topological queries

There is a large amount of research in the literature, see *De Floriani and Hui, 2005* and *Botsch et al., 2010*



(I)

Drawbacks (wrt non-manifolds)

only local connectivity for every simplex

Classical approach

- Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space
- Represented by topological data structures:
 - simplices (vertices, edges, triangles,...)
 - topological relations for each simplex:
 - boundary, co-boundary, adjacency
 - efficient extraction of topological queries

There is a large amount of research in the literature, see *De Floriani and Hui, 2005* and *Botsch et al., 2010*



(I)

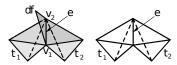
Drawbacks (wrt non-manifolds)

- only local connectivity for every simplex
- meaningful components are not exposed explicitly

Classical approach

- Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space
- Represented by topological data structures:
 - simplices (vertices, edges, triangles,...)
 - topological relations for each simplex:
 - boundary, co-boundary, adjacency
 - efficient extraction of topological queries

There is a large amount of research in the literature, see *De Floriani and Hui, 2005* and *Botsch et al., 2010*



(I)

Drawbacks (wrt non-manifolds)

- only local connectivity for every simplex
- meaningful components are not exposed explicitly
- non-manifold singularities are not exposed directly (non recognizable for d > 5, Nabutovski, 1996)

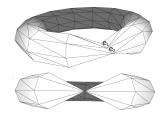
Classical approach

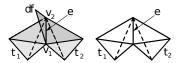
- Discretized by simplicial d-complexes of any dimension, embedded in the Euclidean space
- Represented by topological data structures:
 - simplices (vertices, edges, triangles,...)
 - topological relations for each simplex:
 - boundary, co-boundary, adjacency
 - efficient extraction of topological queries

There is a large amount of research in the literature, see *De Floriani and Hui, 2005* and *Botsch et al., 2010*

Drawbacks (wrt non-manifolds)

- only local connectivity for every simplex
- meaningful components are not exposed explicitly
- non-manifold singularities are not exposed directly (non recognizable for d > 5, Nabutovski, 1996)





Structural Model

connections among meaningful components (global structure)

Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers valuable information for:

.

Image: A matrix

Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers valuable information for:

decomposing a shape into almost manifold components (simpler topology)

David Canino, Leila De Floriani (DIBRIS)

Image: Image:

- E F

Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers valuable information for:

- decomposing a shape into almost manifold components (simpler topology)
- these components are connected by non-manifold singularities

Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers valuable information for:

- decomposing a shape into almost manifold components (simpler topology)
- these components are connected by non-manifold singularities

Related Work (see paper)

- Rossignac et al., 1989/1999
- Desaulniers and Stewart, 1992
- De Floriani et al., 2003
- Pesco et al., 2004
- Attene et al., 2009

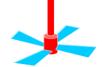
Main Property of Non-Manifold Shapes

Complex topology of a non-manifold shape offers valuable information for:

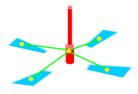
- decomposing a shape into almost manifold components (simpler topology)
- these components are connected by non-manifold singularities

Related Work (see paper)

- Rossignac et al., 1989/1999
- Desaulniers and Stewart, 1992
- De Floriani et al., 2003
- Pesco et al., 2004
- Attene et al., 2009



Topological data structure (Local Connectivity)



Structural Model (Global Structure)

(4) E (4) A (E)

Image: Image:

Main Property of Non-Manifold Shapes

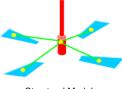
Complex topology of a non-manifold shape offers valuable information for:

- decomposing a shape into almost manifold components (simpler topology)
- these components are connected by non-manifold singularities

Related Work (see paper)

- Rossignac et al., 1989/1999
- Desaulniers and Stewart, 1992
- De Floriani et al., 2003
- Pesco et al., 2004
- Attene et al., 2009

Topological data structure (Local Connectivity)



Structural Model (Global Structure)

Key Idea of our Approach

Expose explicitly and combine *combinatorial* and *structural* information

Compact Manifold-Connected (MC-) graph

Two-level graph-based representation of the

MC-decomposition, Hui and De Floriani, 2007

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Given a simplicial *d*-complex Σ and $k \leq d$:

Given a simplicial *d*-complex Σ and $k \leq d$:

Top k-simplex

Does not bound any other simplex

Given a simplicial *d*-complex Σ and $k \leq d$:

Top k-simplex

Does not bound any other simplex

Manifold (k - 1)-path (MC-Adjacency)

Sequence of top *k*-simplices in Σ , where each simplex is *adjacent* through a (k - 1)-simplex, bounding *at most two* top *k*-simplices

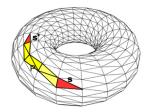
Given a simplicial *d*-complex Σ and $k \leq d$:

Top k-simplex

Does not bound any other simplex

Manifold (k - 1)-path (MC-Adjacency)

Sequence of top *k*-simplices in Σ , where each simplex is *adjacent* through a (k - 1)-simplex, bounding *at most two* top *k*-simplices



Always decidable and dimension-independent

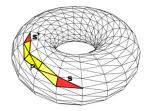
Given a simplicial *d*-complex Σ and $k \leq d$:

Top k-simplex

Does not bound any other simplex

Manifold (k - 1)-path (MC-Adjacency)

Sequence of top *k*-simplices in Σ , where each simplex is *adjacent* through a (k - 1)-simplex, bounding *at most two* top *k*-simplices



Always decidable and dimension-independent

MC-complex of dimension k

Maximal manifold (k – 1)-path, starting from a top k-simplex σ

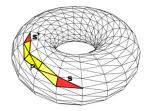
Given a simplicial *d*-complex Σ and $k \leq d$:

Top k-simplex

Does not bound any other simplex

Manifold (k - 1)-path (MC-Adjacency)

Sequence of top *k*-simplices in Σ , where each simplex is *adjacent* through a (k - 1)-simplex, bounding *at most two* top *k*-simplices



Always decidable and dimension-independent

MC-complex of dimension k

- Maximal manifold (k 1)-path, starting from a top k-simplex σ
- Representative top simplex σ (arbitrary)

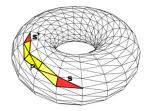
Given a simplicial *d*-complex Σ and $k \leq d$:

Top k-simplex

Does not bound any other simplex

Manifold (k - 1)-path (MC-Adjacency)

Sequence of top *k*-simplices in Σ , where each simplex is *adjacent* through a (k - 1)-simplex, bounding *at most two* top *k*-simplices



Always decidable and dimension-independent

MC-complex of dimension k

- Maximal manifold (k 1)-path, starting from a top k-simplex σ
- Representative top simplex σ (arbitrary)
- Equivalence class [σ] wrt to MC-adjacency

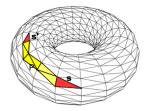
Given a simplicial *d*-complex Σ and $k \leq d$:

Top k-simplex

Does not bound any other simplex

Manifold (k - 1)-path (MC-Adjacency)

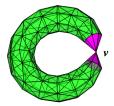
Sequence of top *k*-simplices in Σ , where each simplex is *adjacent* through a (k - 1)-simplex, bounding *at most two* top *k*-simplices



Always decidable and dimension-independent

MC-complex of dimension k

- Maximal manifold (k 1)-path, starting from a top k-simplex σ
- Representative top simplex σ (arbitrary)
- Equivalence class [σ] wrt to MC-adjacency



・ロト ・回ト ・ヨト ・ヨト

Superclass of manifolds, they may contain non-manifold singularities

Manifold-Connected (MC) Decomposition

MC-Decomposition

Decomposition of a simplicial complex Σ into its *MC-complexes* (*MC-components*)

Image: A matrix

Manifold-Connected (MC) Decomposition

MC-Decomposition

- Decomposition of a simplicial complex Σ into its *MC-complexes* (*MC-components*)
- Unique, decidable, and dimension-independent (also for high dimensions)

Image: Image:

- E F

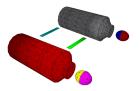
Manifold-Connected (MC) Decomposition

MC-Decomposition

- Decomposition of a simplicial complex Σ into its *MC-complexes* (*MC-components*)
- Unique, decidable, and dimension-independent (also for high dimensions)

1 MC-component

6 MC-components



8 MC-components

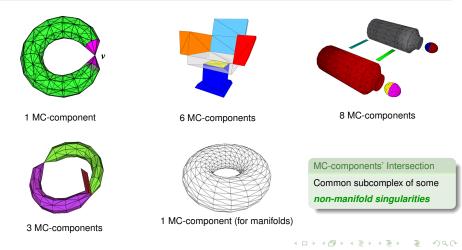
3 MC-components

1 MC-component (for manifolds)

Manifold-Connected (MC) Decomposition

MC-Decomposition

- Decomposition of a simplicial complex Σ into its MC-complexes (MC-components)
- Unique, decidable, and dimension-independent (also for high dimensions)



The Compact Manifold-Connected (MC-) graph

A two-level representation of the MC-decomposition, which integrates combinatorial and structural aspects.

The Compact Manifold-Connected (MC-) graph

A two-level representation of the MC-decomposition, which integrates combinatorial and structural aspects.

Lower Level (Combinatorial Aspects)

Describes a non-manifold shape by any topological data structure \mathcal{M}_{Σ} (*unique*):

- the Incidence Simplicial (IS) data structure, De Floriani et al., 2010
- the Generalized Indexed data structure with Adjacencies (IA*), Canino et al., 2011
- any topological data structure for non-manifolds can be exploited

The Compact Manifold-Connected (MC-) graph

A two-level representation of the MC-decomposition, which integrates combinatorial and structural aspects.

Lower Level (Combinatorial Aspects)

Describes a non-manifold shape by any topological data structure \mathcal{M}_{Σ} (*unique*):

- the Incidence Simplicial (IS) data structure, De Floriani et al., 2010
- the Generalized Indexed data structure with Adjacencies (IA*), Canino et al., 2011
- any topological data structure for non-manifolds can be exploited

The Mangrove TDS Framework (Canino, 2012 - PhD. Thesis)

- Tool for the fast prototyping of topological data structures
- Extensible through dynamic plugins (mangroves)
- Any type of complexes is supported

The Mangrove TDS Library is released as GPL v3 software for the scientific community at http://mangrovetds.sourceforge.net

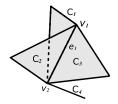
Describes the *connectivity* of MC-components by a hypergraph $\mathcal{G}_{\Sigma}^{C} = (\mathcal{N}_{\Sigma}, \mathcal{A}_{\Sigma}^{C})$

(I)

Describes the *connectivity* of MC-components by a hypergraph $\mathcal{G}_{\Sigma}^{\mathcal{C}} = (\mathcal{N}_{\Sigma}, \mathcal{A}_{\Sigma}^{\mathcal{C}})$

A hypernode in \mathcal{N}_Σ

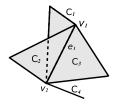
- Corresponds to one *MC-component* C
- Reference to the *representative simplex* of C



Describes the *connectivity* of MC-components by a hypergraph $\mathcal{G}_{\Sigma}^{\mathcal{C}} = (\mathcal{N}_{\Sigma}, \mathcal{A}_{\Sigma}^{\mathcal{C}})$

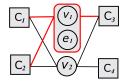
A hypernode in \mathcal{N}_Σ

- Corresponds to one MC-component C
- Reference to the representative simplex of C



A hyperarc *a* in \mathcal{A}_{Σ}^{C}

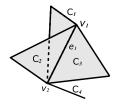
- Describes the *maximal* subcomplex S of non-manifold singularities, shared by a maximal list C₁,..., C_k of MC-components
- References to s_a non-manifold singularities in S
- References to all the *representative simplices* of C₁,..., C_k



Describes the *connectivity* of MC-components by a hypergraph $\mathcal{G}_{\Sigma}^{C} = (\mathcal{N}_{\Sigma}, \mathcal{A}_{\Sigma}^{C})$

A hypernode in \mathcal{N}_Σ

- Corresponds to one MC-component C
- Reference to the representative simplex of C

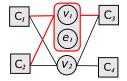


A hyperarc *a* in \mathcal{A}_{Σ}^{C}

- Describes the *maximal* subcomplex S of non-manifold singularities, shared by a maximal list C₁,..., C_k of MC-components
- References to s_a non-manifold singularities in S
- References to all the *representative simplices* of C₁,..., C_k

References are directed toward simplices in \mathcal{M}_{Σ}

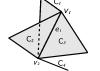
Similar to a spatial index on any non-manifold shape

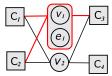


Storage Cost $S_{\mathcal{C}} = n_{\mathcal{C}} + \sum_{a \in \mathcal{A}_{\Sigma}^{\mathcal{C}}} (k_a + s_a)$

・ロト ・回ト ・ヨト ・ヨト

David Canino, Leila De Floriani (DIBRIS)



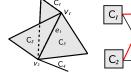


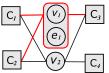
Properties of our Compact MC-graph

- Few hyperarcs
- Minimizes duplications of intersections
- Maximal list of MC-components in hyperarcs

David Canino, Leila De Floriani (DIBRIS)

February 23, 2013 9 / 15



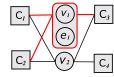


Properties of our Compact MC-graph

Few hyperarcs

- Minimizes duplications of intersections
- Maximal list of MC-components in hyperarcs

Our Compact MC-graph resolves all the drawbacks of:



Properties of our Compact MC-graph

Image: Image:

- Few hyperarcs
- Minimizes duplications of intersections
- Maximal list of MC-components in hyperarcs

Our Compact MC-graph resolves all the drawbacks of:

Pairwise MC-Graph (Boltcheva, Canino, et al., 2011)

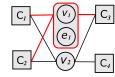
 $\mbox{Arcs}\equiv \textit{intersections}$ of only two MC-Components, formed by a

subcomplex of non-manifold singularities

Verbose due to cliques

Less robust wrt to simmetry

→ Ξ →



Properties of our Compact MC-graph

- Few hyperarcs
- Minimizes duplications of intersections
- Maximal list of MC-components in hyperarcs

Our Compact MC-graph resolves all the drawbacks of:

Pairwise MC-Graph (Boltcheva, Canino, et al., 2011)

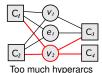
 $\text{Arcs} \equiv intersections$ of only two MC-Components, formed by a subcomplex of non-manifold singularities

Exploded MC-Graph (Canino and De Floriani, 2011)

A hyper-arc \equiv one *non-manifold singularity* σ , and connects all the MC-components, bounded by σ

Verbose due to cliques

Less robust wrt to simmetry



Many duplications of the same

MC-components in hyperarcs

Experimental Results (with our Mangrove TDS Library)

Digital shapes are freely available from http://indy.disi.unige.it/nmcollection

2D shapes (Storage cost and Properties of MC-graphs)							
Shape	n _C	a _E	a _P	a _C	SE	S _P	S_{C}
Carter	45	641	79	48	3.8 <i>k</i>	2.6 <i>k</i>	1.2 <i>k</i>
Chandelier	130	616	328	96	2.6 <i>k</i>	2.6 <i>k</i>	1 <i>k</i>
Pinched Pie	120	1.4 <i>k</i>	1.4 <i>k</i>	192	4.8 <i>k</i>	9.6 <i>k</i>	1.9 <i>k</i>
Tower	169	1.4 <i>k</i>	13 <i>k</i>	165	5.9 <i>k</i>	43 <i>k</i>	2.1 <i>k</i>

 n_C : #MC-components a_E, a_P, a_C : #(hyper)arcs S_E, S_P, S_C : storage costs

For 2D shapes:

 $\begin{array}{l} a_E \approx 8.9 \times a_C, \, a_P \approx 23 \times a_C \\ S_E \approx 2.8 \times S_C, \, S_P \approx 7.7 \times S_C \end{array}$

3D shapes (Storage cost and Properties of MC-graphs)

Shape	n _C	a _E	a _P	a _C	SE	S_P	S _C
Chime	27	29	47	28	133	210	127
Flasks	8	76	10	6	300	232	98
Teapot	2.9 <i>k</i>	1.2 <i>k</i>	18.1 <i>k</i>	1 <i>k</i>	10.4 <i>k</i>	57.5 <i>k</i>	10.1 <i>k</i>
Wheel	115	136	520	88	675	1.7 <i>k</i>	563

For 3D shapes:

 $\begin{array}{l} a_E \approx 4.1 \times a_C, \, a_P \approx 6.8 \times a_C \\ S_E \approx 1.6 \times S_C, \, S_P \approx 3.2 \times S_C \end{array}$

イロト イポト イヨト イヨト

Our experimental results confirm properties of the Compact MC-graph

Experimental Results (cont'd)

Comparisons with the Incidence Graph, Edelsbrunner, 1987						
Shape	S _C	S _{IA*}	S _{IG}	$S_{C} + S_{IA*}$		
Carter	1.2 <i>k</i>	52 <i>k</i>	95 <i>k</i>	53.2 <i>k</i>		
Chandelier	1 <i>k</i>	120 <i>k</i>	220 <i>k</i>	121 <i>k</i>		
Tower	2.1 <i>k</i>	124 <i>k</i>	221 <i>k</i>	126.1 <i>k</i>		
Flasks	98	29 <i>k</i>	104 <i>k</i>	29.1 <i>k</i>		
Teapot	10.1 <i>k</i>	85 <i>k</i>	220 <i>k</i>	95.1 <i>k</i>		
Sierpinski 3D	458 <i>k</i>	524 <i>k</i>	3.67 <i>M</i>	0.98 <i>M</i>		
Sierpinski 4D	664 <i>k</i>	781 <i>k</i>	11.6 <i>M</i>	1.44 <i>M</i>		
Sierpinski 5D	467 <i>k</i>	559.6 <i>k</i>	7.7M	1 <i>M</i>		

Combined with the IA* data structure, *Canino et al., 2011*

> S_{IA^*} : storage cost of the IA* S_{IG} : storage cost of the IG

For 2D shapes: $S_{IG} \approx 1.45 \times S_{IA*}$ For 3D shapes: $S_{IG} \approx 3.2 \times S_{IA*}$ For 4D shapes: $S_{IG} \approx 8 \times S_{IA*}$ For 5D shapes: $S_{IG} \approx 7.7 \times S_{IA*}$

Experimental Results (cont'd)

Comparisons with the Incidence Graph, Edelsbrunner, 1987						
Shape	S _C	S _{IA*}	S _{IG}	$S_{C} + S_{IA^*}$		
Carter	1.2 <i>k</i>	52 <i>k</i>	95 <i>k</i>	53.2k		
Chandelier	1 <i>k</i>	120 <i>k</i>	220 <i>k</i>	121 <i>k</i>		
Tower	2.1 <i>k</i>	124 <i>k</i>	221 <i>k</i>	126.1 <i>k</i>		
Flasks	98	29 <i>k</i>	104 <i>k</i>	29.1 <i>k</i>		
Teapot	10.1 <i>k</i>	85 <i>k</i>	220 <i>k</i>	95.1 <i>k</i>		
Sierpinski 3D	458 <i>k</i>	524 <i>k</i>	3.67 <i>M</i>	0.98 <i>M</i>		
Sierpinski 4D	664 <i>k</i>	781 <i>k</i>	11.6 <i>M</i>	1.44 <i>M</i>		
Sierpinski 5D	467 <i>k</i>	559.6 <i>k</i>	7.7 <i>M</i>	1 <i>M</i>		

Combined with the IA* data structure, *Canino et al., 2011*

> S_{IA^*} : storage cost of the IA* S_{IG} : storage cost of the IG

For 2D shapes: $S_{IG} \approx 1.45 \times S_{IA*}$ For 3D shapes: $S_{IG} \approx 3.2 \times S_{IA*}$ For 4D shapes: $S_{IG} \approx 8 \times S_{IA*}$ For 5D shapes: $S_{IG} \approx 7.7 \times S_{IA*}$

(日)

Interesting result (wrt the Incidence Graph)

The *Compact MC-graph*, combined with the *IA** data structure, is *more compact* than the incidence graph:

- our contribution is a structural model (topological + structural aspects)
- the IG data structure is a topological data structure (*local connectivity*)

Compact Manifold-Connected (MC-) graph

Two-level graph-based representation of the *MC-decomposition*, *Hui and De Floriani, 2007*

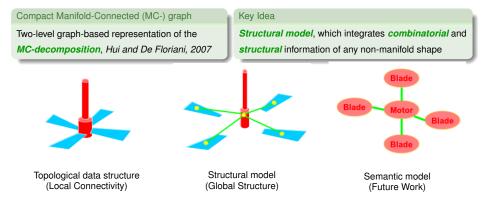
(I)

Compact Manifold-Connected (MC-) graph

Two-level graph-based representation of the *MC-decomposition*, *Hui and De Floriani, 2007*

Key Idea

Structural model, which integrates combinatorial and structural information of any non-manifold shape



→ ∃ →

Image: A matrix

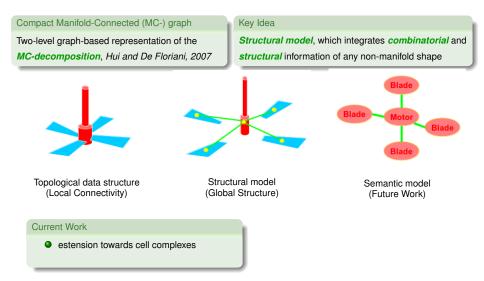


Image: Image:

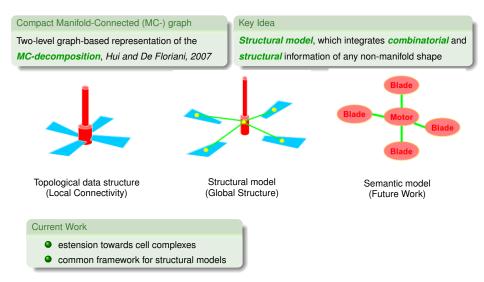
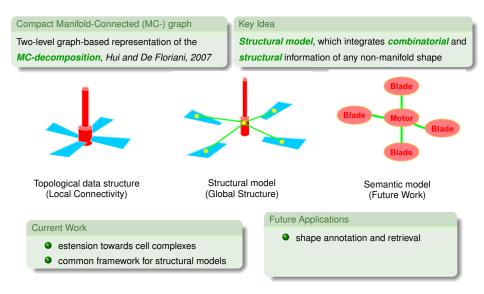
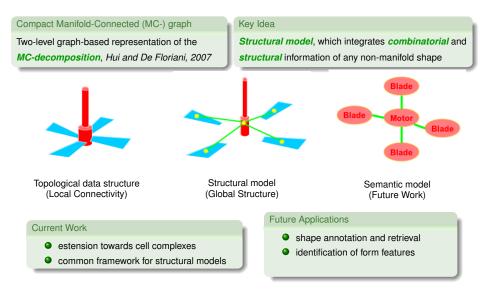
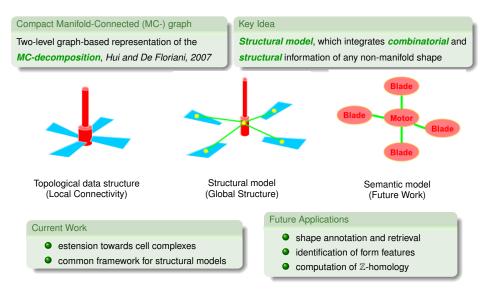


Image: Image:







Acknowledgements

We thank:

- anonymous reviewers for their useful suggestions
- the Italian Ministry of Education and Research (the PRIN 2009 program)
- the National Science Foundation (contract IIS-1116747)

These slides are available on http://www.disi.unige.it/person/CaninoD

Thank you much for your attention!

Interesting Papers and References

- M. Attene, D. Giorgi, M. Ferri, and B. Falcidieno, On Converting Sets of Tetrahedra to Combinatorial and PL Manifolds, Computer-Aided Design, 26(8):850-864, Elsevier Press, 2009
- M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, B. Lévy, Polygon Mesh Processing, CRC Press, 2010
- D. Boltcheva, D. Canino, S. Merino, J.-C. Léon, L. De Floriani, F. Hétroy, An Iterative Algorithm for Homology Computation on Simplicial Shapes, Computer-Aided Design, 43(11):1457-1467, Elsevier Press, SIAM Conference on Geometric and Physical Modeling (GD/SPM 2011)
- D. Canino, L. De Floriani, A Decomposition-based Approach to Modeling and Understanding Arbitrary Shapes, 9th Eurographics Italian Chapter Conference, Eurographics Association, 2011
- D. Canino, L. De Floriani, K. Weiss, IA*: An Adjacency-Based Representation for Non-Manifold Simplicial Shapes in Arbitrary Dimensions, Computer & Graphics, 35(3):747-753, Elsevier Press, Shape Modeling International 2011 (SMI 2011), Poster
- L. De Floriani and A. Hui, Data Structures for Simplicial Complexes: an Analysis and a Comparison, In Proceedings of the 3rd Eurographics Symposium on Geometry Processing (SGP '05), pages 119-128, ACM Press, 2005
- L. De Floriani, A. Hui, D. Panozzo, D. Canino, A Dimension-Independent Data Structure for Simplicial Complexes, In S. Shontz Ed., Proceedings of the 19th International Meshing Roundtable, pages 403-420, Springer, 2010
- L. De Floriani, M. Mesmoudi, F. Morando, and E. Puppo, Decomposing Non-manifold Objects in Arbitrary Dimension, Graphical Models, 65:1/3:2-22, Elsevier Press, 2003
- H. Desaulniers and N. Stewart, An Extension of Manifold Boundary Representations to the r-sets, ACM Transactions on Graphics, 11(1):40-60, 1992
- H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer, 1987

Interesting Papers and References (cont'd)

- A. Hui and L. De Floriani, A Two-level Topological Decomposition for Non-Manifold Simplicial Shapes, In Proceedings of the ACM Symposium on Solid and Physical Modeling, pages 355-360, ACM Press, 2007
- A. Nabutovsky, Geometry of the Space of Triangulations of a Compact Manifold, Communications in Mathematical Physics, 181:303-330, 1996
- S. Pesco, G. Tavares, H. Lopes, A Stratification Approach for Modeling Two-dimensional Cell Complexes, Computer & Graphics, 28:235-247, 2004
- J. Rossignac and M. O'Connor, A Dimension-independent for Point-sets with Internal Structures and Incomplete Boundaries, Geometric Modeling for Product Engineering, North-Holland, 1989
- J. Rossignac and D. Cardoze, Matchmaker: manifold BReps for Non-manifold R-sets, Proceedings of the ACM Symposium on Solid Modeling and Applications, ACM Press, pages 31-41, 1999

(日)