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Summary. Simplicial complexes are extensively used for discretizing digital shapes
in two, three, and higher dimensions within a variety of application domains. There
have been many proposals of topological data structures, which represent the con-
nectivity information among simplices. We introduce the Mangrove Topological Data
Structure (Mangrove TDS) framework, a tool which supports the efficient implemen-
tation of data structures for simplicial complexes of any dimension under the same
application interface. Our framework is based on a graph-based representation of
connectivity relations, that we call the mangrove. It can be customized in order to
simulate the content of any topological data structure with a negligible overhead.
Thus, the Mangrove TDS framework is extensible, and supports the most diverse
modeling needs. We also provide implicit representations of those simplices, which
are not directly encoded in a specific topological data structure. Our tests show that
these representations, that we call ghost simplices, improve the expressive power and
the efficiency of topological queries. In order to prove the validity of our approach, we
design two topological data structures, specific for non-manifold complexes, within
our framework. We perform comparisons with some widely-used representations in
the literature as well as with libraries available in the public domain.

1 Introduction

Simplicial complexes are used to discretize digital shapes in many applica-
tions, including computer graphics, solid modeling, numerical simulations,
scientific visualization, and geographic data processing. Many tools handle
manifold shapes, i.e., subsets of the Euclidean space such that each neighbor-
hood of every point is homeomorphic to a ball. Objects, which violate this
property, are non-manifold, and arise in the finite element simulations [25] and
in the topological analysis of data in high dimensions [3,5]. Many topological
data structures have been developed for retrieving connectivity information
of simplicial complexes [18]. Most of representations are specific for shape op-
timization [7], geometry processing [6, 32], and numerical simulations [1, 25].
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A framework, which supports topological data structures under a common
interface is lacking in the literature [48]. It should be the basis for perform-
ing quantitative comparisons, regarding their performances. Topological data
structures are implemented in heterogenous libraries, whose efficiency depends
not only on their intrinsic properties, but also on the programmers’ technical
ability and on their design. This framework should also be a common platform
for designing and simulating topological data structures efficiently. The key
idea consists of creating a prototype of a topological data structure, which
is customized in order to satisfy any modeling need in the same spirit of the
rapid prototyping techniques in the manufacturing [52]. Hence, this framework
may be extended with new data structures, and the internal representation of
a complex may be dynamically replaced in order to choose the most efficient
one for a specific task. Thus, it would be different from many tools in the liter-
ature [6,7,14], since they are defined on a specific representation, which cannot
be replaced dynamically at run-time. Actually, some tools can be modified dy-
namically [23, 34, 45, 47], but only in a predefined way and without messing
with their internal representation, which remains almost unchanged.

The connectivity information of simplices, formalized by topological re-
lations, can be described as a directed graph, which we call the mangrove,
whose nodes and arcs correspond, respectively, to simplices and topological
relations, encoded in any topological data structure. In this paper, we pro-
pose the Mangrove Topological Data Structure (Mangrove TDS) framework,
which is geared to the design of topological data structures, represented by
mangroves, under the same application interface.

Another contribution of this work is provided by what we call the ghost
simplices. Adjacency-based data structures, e.g., the Indexed data structure
with Adjacencies [44], encode only vertices, and top simplices (those that do
not bound other simplices). They are more compact than the incidence-based
ones, in which all simplices are encoded explicitly [18]. However, it may be
necessary to execute topological queries also on those simplices, which are not
encoded explicitly. Thus, it is mandatory to define an implicit representation
for these simplices in order to execute topological queries on complexes of
any dimension and with a domain not necessarily manifold [23]. Most of the
implicit representations in the literature are defined only for 2D and 3D man-
ifolds [46]. There exist also implicit representations [8,12], which are suitable
for non-manifolds, but they result in a expensive representation, if used in
high dimensions. Here, we propose a new implicit representation of a sim-
plex (that we call the ghost simplex ), which is always formed by four indices,
despite the dimension and the number of top simplices in the complex. We
show that ghost simplices improve the efficiency of topological queries and the
expressive power of adjacency-based representations [10].

We have designed many data structures [11, 16, 17, 19, 20, 24] in order to
evaluate the modeling capabilities of our framework [10]. Their implementa-
tions, specific for simplicial complexes, are contained in the Mangrove TDS
Library [38]. We have evaluated the efficiency of topological queries on these
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data structures with respect to popular representations in the literature as
well as with libraries in the public domain. Our tests show that the Incidence
Simplicial (IS) [19] data structure and the Generalized Indexed data structure
with Adjacencies (IA∗) [11] are the most efficient ones in this group [10].

The remainder of this paper is organized as follows. In Sect. 2, we summa-
rize background notions, and, in Sect. 3, we review related work. In Sect. 4,
we introduce our Mangrove TDS framework, and, in Sect. 5, we propose the
implementations of the IS and the IA∗ data structures within our framework.
In Sect. 6, we propose and introduce ghost simplices, while, in Sect. 7, we
show quantitative results regarding our implementations. Finally, in Sect. 8,
we draw some concluding remarks and discuss future developments.

2 Background Notions

A Euclidean simplex σ of dimension k = dim(σ) is the linear combination
of k + 1 points in the Euclidean space En, with 0 ≤ k ≤ n. Any Euclidean
d-simplex σ′, with 0 < d ≤ k, generated by a subset of d + 1 vertices of σ,
is a d-face of σ. We say that σ is a k-face of itself. The number of d-faces of
σ is

(
k+1
d+1

)
[24]. A simplicial d-complex Σ is a finite collection of simplices of

dimension at most d if (i) faces of each simplex belong to Σ, and (ii) for any
simplices σ and σ′, either σ ∩ σ′ = ∅ or σ ∩ σ′ is a common face. A d-simplex
in Σ is maximal. The domain of Σ is the union as point sets of its simplices.

The combinatorial boundary B(σ) of any k-simplex σ contains its faces.
The star of simplex σ, denoted as St(σ), contains simplices σ′ such that σ
belongs to B(σ′). Simplices such that their star is empty are top simplices.
A non-regular simplicial d-complex Σ contains top simplices, which are not
maximal. Two k-simplices are adjacent if they share a (k − 1)-simplex, while
any two vertices are adjacent if they are connected by a common 1-simplex.
The link of any simplex σ, denoted as Lk(σ), is formed by all the faces of
simplices in St(σ), such that σ does not belong to their boundaries.

A k-path is a sequence of (k + 1)-simplices in any simplicial complex Σ
such that two consecutive simplices are adjacent. Two simplices σ and σ′ are
k-connected if they are connected by a k-path. A subset Σ′ of Σ, formed by
k-connected simplices, is a k-connected subcomplex of Σ. Any maximal (k−1)-
connected subcomplex of Σ, formed only by top k-simplices, is a k-cluster.

A k-simplex σ in a simplicial d-complex Σ is manifold if Lk(σ) is home-
omorphic to the (d − k)-sphere, otherwise σ is a non-manifold singularity. If
all 0-simplices of Σ are manifold, then Σ is a combinatorial manifold and its
domain is a manifold. In any case, these tests are not always decidable [41].

3 Related Work

Many topological data structures have been proposed in the literature [1, 18,
25]. Informally, topological data structures encode the connectivity informa-
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tion for any subset of simplices. They are classified with respect to the dimen-
sion, the type of entities, and the domain of the complex. A data structure
for non-manifolds should be scalable, i.e., should exhibit a small overhead, if
applied to manifolds, with respect to a data structure, specific for manifolds.

Edge-based data structures, specific for cell 2-complexes, encode oriented
boundaries of 2-cells as lists of oriented edges (half-edges), like the Half-Edge
(HE) data structure [39] and its extensions [6,9,31,40,48], which are used in
popular libraries in computational geometry [14, 42]. The Radial-Edge data
structure [51] is one of the first extensions of the HE data structure for non-
manifold 2-complexes, but it exhibits a large overhead if applied to manifolds.
The Partial Entity [35] and the Q-Complex [53] representations are compact
variants of the Radial-Edge data structure. These data structures have been
extended to 3-complexes by encoding the oriented 2-cells (half-faces) on the
boundary of 3-cells [22, 37]. The OpenVolumeMesh data structure [32] rep-
resents non-manifold 3-complexes, and is the basis of a popular library [43].
These representations, including the X-Maps [13], are specializations of the
Combinatorial Maps [36], which are based on the cell tuples [8].

Edge-based data structures are more verbose than the incidence-based rep-
resentations [18]. These latter encodes all cells in a complex and a subset of
their boundary and star, like the Incidence Graph [24], and its dimension-
independent restrictions to simplicial complexes, i.e., the Simplified Incidence
Graph [16] and our Incidence Simplicial [19] data structure.

Adjacency-based data structures are alternative compact representations
for simplicial complexes. They encode only vertices and top simplices, which
are not on the boundary of other simplices, plus their adjacent simplices. The
dimension-independent Indexed data structure with Adjacencies (IA) [44] is
limited to regular simplicial complexes of any dimension. Slight variants of
this latter are implemented in [50] and in tools popular in the finite element
analysis [7, 45, 49]. Two extensions of the IA data structure for non-manifold
simplicial 2- and 3-complexes, embedded in the Euclidean space E3, are intro-
duced in [17,20]. Our Generalized Indexed data structure with Adjacencies [11]
extends the IA data structure to non-manifold simplicial complexes of any di-
mension, not necessarily embedded in the Euclidean space.

Compact representations for manifold simplicial complexes are obtained
by encoding topological relations implicitly, e.g., cell tuples [8]. The Corner-
Table data structure [46] and its variants [27–30,33] are specific for manifold
simplicial 2- and 3-complexes. A compact representation for regular complexes
of dimension up to 3 is based on the link of vertices and edges [4]. The Cell-
Chains [12] extend cell tuples to non-manifold complexes of any dimension.

4 The Mangrove TDS framework

As shown in [18], the connectivity information of simplices in a simplicial d-
complex Σ is expressed by topological relations. Let Σk be the collection of
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k-simplices in Σ (with 0 ≤ k ≤ d). A topological relation (σ, σ′) in Σk ×Σm

is denoted as σ ∼km σ′. It can be: (i) a boundary relation, with k > m, if σ′

is a face of σ; (ii) a co-boundary relation, with k < m, if σ′ belongs to St(σ);
(iii) an adjacency relation, with k = m 6= 0, if σ and σ′ share a (k − 1)-face,
or they are adjacent vertices, if k = m = 0. Given a k-simplex σ in Σ, the
relational operator Rk,m(σ) = {σ′ ∈ Σm.σ ∼km σ′} is confused with ∼km.

Topological relations provide an effective framework for representing sim-
plicial complexes by topological data structures, which encode explicitly only
a subset of topological relations, restricted to a subset of simplices in Σ. The
main contribution of our Mangrove Topological Data Structure (Mangrove
TDS) framework consists of representing any topological data structure un-
der a common application interface. The key idea of our approach consists of
providing a generic prototype of a topological data structure, which can be
customized in order to simulate the content of any representation in the same
spirit of the rapid prototyping techniques in the manufacturing [52].

This prototype is obtained by describing topological relations in any sim-
plicial d-complex Σ as a directed graph GΣ = (N ,A), in which (i) each node
nσ corresponds to one k-simplex in Σ, and (ii) each arc (nσ, n

′
σ) in A connects

two nodes, representing a k-simplex σ and a m-simplex σ′ (with 0 ≤ k,m ≤ d)
such that σ ∼km σ′. Graph GΣ describes all simplices and topological relations
in Σ, thus it cannot be used in the applications due to its high storage cost.
However, any topological data structureMΣ is described as a subgraph of GΣ ,
indicated as GMΣ . This latter is formed by nodes and arcs of GΣ , correspond-
ing, respectively, to simplices and topological relations, which are directly
encoded inMΣ . Arcs of graph GMΣ are classified on the basis of the topologi-
cal relations they represent as the boundary, co-boundary and adjacency arcs.
Boundary, co-boundary and adjacency arcs, together with nodes of GMΣ , de-
fine three spanning subgraphs of GMΣ , that we call the boundary, co-boundary
and adjacency graphs, respectively. These graphs belong to a specific class of
graphs, known as mangroves, such that nodes and arcs, reachable from any
node, form a tree [2]. In particular, graph GMΣ is (i) a global mangrove, if it en-
codes all nodes of graph GΣ , corresponding to all simplices in Σ, (ii) a partial
mangrove, if it encodes only some nodes of GΣ , corresponding to a subset of
simplices in Σ. Thus, mangroves allow to reduce the problem of designing any
topological data structureMΣ to the representation of graph GMΣ , regardless
what simplices, topological relations, and which domain are described.

Generic Encoding of Connectivity Information
A specific mangrove GMΣ , which does not encode necessarily all simplices in
Σ, can be represented by an adjacency-list data structure. All nodes of graph
GMΣ , which correspond to p-simplices in Σ (for each 0 ≤ p ≤ d), are stored
in one array, which we call the SimplicesContainer. This latter supports the
garbage collector mechanism for reusing those locations, which are marked
as deleted by editing operators. In order to access locations sequentially, safe
iterators, which skip deleted locations automatically, are also provided. Any
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location of one SimplicesContainer array contains a node nσ of GMΣ , which
corresponds to any p-simplex σ. This location is accessed in constant time
through a handle (p, i), which we call the SimplexPointer, where i is the in-
dex of its location in the SimplicesContainer array of interest, identified by
p. This location also contains nodes of GMΣ which are adjacent to nσ through
boundary, co-boundary, and adjacency arcs in GMΣ , respectively. Note that not
all types of arcs will be present in GMΣ , e.g., adjacency arcs will not be present
when representing an incidence-based data structure [10]. Auxiliary informa-
tion, e.g., Euclidean coordinates and field values, are dynamically allocated
at run-time and associated as attributes with nodes of GMΣ as in [31,32,48].

Any mangrove GMΣ is a dynamic plugin, which satisfies a common appli-
cation interface in a transparent way by using meta-programming techniques.
We consider the following operations, defined on a simplex σ: (i) BOUND-
ARY, which retrieve all faces of σ, (ii) STAR, which retrieves simplices in
the star of σ, (iii) ADJACENCY, which retrieves all simplices adjacent to σ,
(iv) LINK, which retrieves the link of σ, and (v) IS-MANIFOLD, which checks
whether σ is manifold. These operations are suitable for many modeling needs,
and are the basis for high-level operations, e.g., those in [48].

Any topological data structure MΣ is made available within our frame-
work by providing its mangrove GMΣ and the implementations of queries. This
process does not require additional overhead with respect to any implementa-
tion ofMΣ outside our framework, since only the content ofMΣ is encoded.

5 Implementations of Topological Data Structures

We have designed many data structures [11,16,17,19,20,24] within our frame-
work [10]. Here we present the Incidence Simplicial data structure [19] and
the Generalized Indexed data structure with Adjacencies [11], since their com-
plementary properties validate the modeling capabilities of our contribution.

5.1 The Incidence Simplicial data structure

The Incidence Simplicial (IS) data structure [19] encodes all simplices in any
simplicial d-complex Σ, not necessarily embedded in the Euclidean space. For
any p-simplex σ, it encodes its (p−1)-faces, i.e., boundary relation Rp,p−1(σ),
and partial co-boundary relationR∗p,p+1(σ), which relates σ with one arbitrary
(p+ 1)-simplex in the star of σ, corresponding to each connected component
in the link of σ. Fig. 1(a) shows two connected components (in bold lines) in
the link of vertex v (with label 0), which are formed, respectively, by vertex
v′, and triangle ft, plus edge ef . These latter correspond, in the star of v, to
top edge w and to tetrahedron t and top triangle f (represented by edge e).
Thus, partial co-boundary relation R∗0,1(v) = (w, e).

The IS data structure is represented by a global mangrove GISΣ , which we
call the IS-graph, where any node nσ corresponds to a simplex σ, any boundary
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(a) (b) (c)

Fig. 1. (a) Two connected components (in bold lines) in the link of vertex v (with
label 0) in a simplicial 3-complex. The (b) boundary and (c) co-boundary graphs in
the global mangrove representing the IS data structure.

arc to a boundary relation Rp,p−1, for 0 < p ≤ d, and any co-boundary arc
to a partial co-boundary relation R∗p,p+1, for 0 ≤ p < d. Encoding the IS-

graph GISΣ does not require to store any adjacency arc in the adjacency-list
data structure proposed in Sect. 4. For each node nσ, endpoints of boundary
and co-boundary arcs, outgoing from nσ, are encoded, as shown in Figs. 1(b-
c) for a simplicial 3-complex. Topological queries, like the BOUNDARY and
the STAR queries, are expressed as breadth-first traversals of nodes reachable
from any node nσ in the IS-graph, in the same spirit of algorithms in [19].

5.2 The IA∗ data structure

The Generalized Indexed data structure with Adjacencies (IA∗) [11] encodes all
vertices and top simplices in any simplicial d-complex Σ, not necessarily em-
bedded in the Euclidean space. For each top p-simplex σ (with 1 ≤ p ≤ d), it
encodes vertices of σ, i.e., boundary relation Rp,0(σ), all top p-simplices adja-
cent to σ, i.e., adjacency relation R∗p,p(σ). For each vertex v, it encodes partial
co-boundary relationR∗0,p(v), for 1 ≤ p ≤ d, consisting of one top p-simplex for
each p-cluster in the star of v, i.e., any maximal (p−1)-connected subcomplex
of St(v), formed by top p-simplices. Fig. 2(a) shows four clusters in the star of
vertex v (with label 1) in a simplicial 3-complex. Here, R∗0,1(v) = ([1, 2]) con-
tains top edge [1, 2], R∗0,2(v) = ([1, 3, 4], [1, 8, 4] corresponds to two 2-clusters,
in red and blue, respectively, and R∗0,3(v) = [1, 11, 12, 14] corresponds to a 3-
cluster, in green. The IA∗ data structure also encodes partial co-boundary re-
lationR∗p−1,p(τ), consisting of top p-simplices in the star of any (p−1)-simplex
τ on the boundary of more than two top p-simplices. Relation R∗p−1,p(τ) al-
lows for a compact encoding of R∗p,p(σ) along one of its (p − 1)-faces τ . If
more than two top p-simplices are incident at τ , e.g., four triangles in the star
of edge [1, 3] in Fig. 2(a), then R∗p,p(σ) along τ is encoded as a reference to
R∗p−1,p(τ), which is stored only once, instead of being replicated for each top
p-simplex in St(τ). On the contrary, a top p-simplex adjacent to σ along τ is
encoded, like top triangles [1, 8, 9] and [1, 9, 10] in Fig. 2(a).

The IA∗ data structure is represented by a partial mangrove GIA∗

Σ , which
we call the IA∗-graph, where nodes correspond to vertices and top simplices,
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Fig. 2. (a) Four clusters in the star of vertex v (with label 1) in a simplicial
3-complex. The corresponding (b) boundary, (c) co-boundary, and (d) adjacency
graphs in the partial mangrove representing the IA∗ data structure.

boundary arcs to relations Rp,0, co-boundary arcs to relations R∗0,p, and ad-
jacency arcs to relations R∗p,p and R∗p−1,p. Figs 2(b-d) show, respectively,
boundary, co-boundary, and adjacency graphs in the IA∗-graph, describing a
simplicial 3-complex. The basic operation for performing topological queries
consists of retrieving top simplices in the star of a vertex v, which is expressed
as a breadth-first traversal of nodes reachable from node nv in the IA∗-graph.
Remaining topological queries can be implemented as discussed in [11].

6 Implicit Representations of Simplices

Adjacency-based data structures, e.g., the IA∗ data structure, are compact,
since only vertices and top simplices are encoded explicitly [18]. In any case,
only topological relations on vertices and top simplices are retrieved in optimal
time, while the time complexity of algorithms retrieving other relations de-
pends on the representation of simplices [11]. Simplices can be represented by
their vertices, but this representation does not scale well to high-dimensions,
and does not improve efficiency of topological queries [10]. Thus, it is necessary
to represent implicitly those simplices, which are not necessarily encoded [23].

Cell tuples [8] are one of the most common implicit representations in the
literature, and are defined on any manifold complex Σ. Connectivity infor-
mation for simplices of Σ is described by two Hasse graphs Hb and Hc [21].
They are graph-based representations of topological relations in the incidence
graph [24], i.e., for any p-simplex σ, boundary relation Rp,p−1(σ) (as in the
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IS data structure), and co-boundary relation Rp,p+1(σ), formed by (p + 1)-
simplices in the star of σ. Since these graphs contain the same nodes and
arcs (but with opposite orientations), we focus our attention to Hc. Fig. 3(b)
shows graph Hc for a 3-complex. Any cell-tuple (σ0, . . . , σd) is a (d+ 1)-tuple
of simplices in Σ such that dim(σi) = i (with 0 ≤ i ≤ d) and σi+1 belongs to
St(σi). It corresponds to a maximal path in Hc, which connects two nodes,
describing, respectively, a vertex and a maximal simplex in its star. Cell-tuple
((4), (4, 7), (4, 5, 7), (4, 5, 6, 7)) in Fig. 3(b), corresponds to a maximal path
(in red) between vertex 4 and tetrahedron (4, 5, 6, 7). Cell-tuples describe the
complete connectivity information of any complex [36], but they are not suit-
able for high-dimensional d-complexes, since they require d + 1 references.

(a) (b) (c)

Fig. 3. (a) In any 3-simplex, (b) a cell-tuple is any maximal path (in red) in Hasse
graph Hc. (c) On the contrary, a ghost simplex corresponds only to one of its faces,
e.g., edge (4, 7) (in red) is described by ghost simplex (3, 0, 1, 3).

In order to solve these drawbacks, we propose a new implicit representation
of simplices, not necessarily encoded in any adjacency-based data structure.
The key idea of our approach consists of describing implicitly a p-simplex σ
(which we call the child simplex ) in any simplicial d-complex Σ as a p-face of
any top t-simplex σ′ (which we call the parent simplex ) in the star of σ, such
that 0 ≤ p ≤ t ≤ d. Thus, simplex σ is represented by a tuple (t, i, p, j), which
we call the ghost simplex of σ, where: (i) t is the dimension of parent simplex
σ′, (ii) i is the unique identifier of σ′ in the collection of top t-simplices in
Σ, (iii) p is the dimension of child simplex σ, (iv) j is the unique identifier of
σ, seen as any p-face of σ′. Note that indices i and j depend on which rule
is exploited in order to enumerate top simplices in Σ and their faces. The
number of p-faces of any t-simplex is

(
t+1
p+1

)
[24], then 0 ≤ j ≤

(
t+1
p+1

)
. Fig. 3(c)

shows how enumerating faces of a top 3-simplex, which is identified by label
0. Any 3-simplex has 6 edges, then node of graph Hc, corresponding to edge
[4, 7] (in red), has identifier 3, and is represented by ghost simplex (3, 0, 1, 3).
Note that any p-simplex σ is represented by several ghost simplices, one for
each top simplex in its star. Thus, this representation is not unique.
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Ghost simplices provide an efficient way to associate a simplex with one top
simplex in its star without traversing graphs Hb and Hc explicitly. This speeds
up the retrieval of topological queries in adjacency-based data structures,
since they encode adjacency relations, restricted to top simplices, which can
be accessed quickly thanks to ghost simplices. The key idea of our approach
consists of restricting graphs Hb and Hc to all faces of a top t-simplex σ′ in the
star of any p-simplex σ (with 0 ≤ p ≤ t ≤ d), and associating a ghost simplex
with each face of σ′ (including σ′). This is achieved by enumerating nodes of
Hb and Hc by dimension and associating their unique identifiers with each
node (see Fig. 3(c)). The resulting ghost simplices are defined with respect to
σ′. The dimension t and the unique identifier of σ′ are known as well as the
dimension p of child simplex σ. Thus, there is the need to retrieve the unique
identifiers of ghost simplices of interest, seen as faces of σ′. These identifiers
are the same for all top t-simplices in any simplicial d-complex Σ. Thus, they
can be stored explicitly as a graph Ht, one for each class of top t-simplices in
Σ (for all 0 ≤ t ≤ d) in order to speed-up the retrieval of topological queries.
Each node of graph Ht corresponds to a p-face σ of any top t-simplex σ′, and
contains unique identifiers of faces of σ′, which are, respectively, (p− 1)-faces
of σ (i.e., boundary relation Rp,p−1 in Hb), and (p + 1)-simplices in the star
of σ (i.e., co-boundary relation Rp,p+1 in Hc). Figs 4(a-b) show, respectively,
indices of these faces (represented as ghost simplices) for any 3-simplex. In
Fig. 4(a), the content of node in red is [0, 3], and, if we apply these idea to
3-simplex in Fig. 3(a), then its immediate boundary relation contains ghost
simplices (3, 0, 0, 0) and (3, 0, 0, 3). As shown in Fig. 4(b), its immediate co-
boundary relation contains ghost simplices (3, 0, 2, 1) and (3, 0, 2, 2).

(a) (b)

Fig. 4. Graph-based representations of immediate (a) boundary and (b) co-
boundary relations, expressed as ghost simplices, for faces of 3-simplex in Fig. 3(a).
Nodes in red correspond to ghost simplex (3,0,1,3) and ghost simplices in its star.

The storage cost Ct of graph Ht is the same as the storage cost of the
incidence graph, restricted to one top t-simplex. We assume to encode a ref-
erence as an integer value, thus Ct = 2

∑t
p=2(p+ 1)

(
t+1
p+1

)
. The storage cost Cd
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for all graphs Ht, is Cd =
∑d
t=1 Ct. It does not depend on the number of top

simplices in Σ, and is the same for all simplicial d-complexes.
Hence, a topological query on any simplex σ is performed in two steps in

any adjacency-based data structure, e.g., the IA∗ data structure [11]. First, we
retrieve every top simplex σ′ in the star of σ, and this operation is performed
efficiently [11]. Then, it is possible to answer to topological queries, restricted
to faces of each top simplex σ′ in the star of σ, by performing breadth-first
traversals of graph Ht (restricted to σ′) in the same way as in the incidence
graph [24]. For instance, in Fig. 4(b), all faces of a 3-simplex in the star of
ghost simplex (3, 0, 1, 3) are retrieved by a breadth-first visit of graph Hc, and
correspond to ghost simplices (3, 0, 2, 1), (3, 0, 2, 2), and (3, 0, 3, 0) (in red).
Note that nodes containing only 0 correspond to 2-faces of a top 3-simplex,
which is a 3-face of itself, thus it is described by (3, 0, 3, 0).

7 Experimental Results

In this section, we analyze the most interesting properties of our Mangrove
TDS Library [38], available in public domain, which contains implementations
of data structures in [10], including the IS and IA∗ data structures.

7.1 Comparisons with Other Tools

In Table 1 we compare our Mangrove TDS Library with the OpenMesh (OM)
Library [42], the OpenVolumeMesh (OVM) Library [43], and the Computa-
tional Geometry Algorithms Library (CGAL) [14].

Table 1. The main properties of the OpenMesh (OM) Library [42], the Open-
VolumeMesh (OVM) Library [43], the Computational Geometry Algorithms Library
(CGAL) [14], and of our Mangrove TDS Library.

OM OVM CGAL Mangrove TDS

Types of shapes cell cell cell simplicial
Dimension of shapes 2 up to 3 any any

Representation OM [6] OVM [32] many any
Extensibility no no modules yes

Non-manifolds partially yes yes yes

The OpenMesh (OM) Library [42] is based on the OM data structure [6], a
variant of the HE data structure [39]. It represents only cell 2-complexes, and
it cannot handle non-manifold 1-cells. Experimental results in [10, 18] show
that it is about twice more expensive than the incidence graph.

The OpenVolumeMesh (OVM) Library [43] is based on the OVM data
structure [32], which is almost the same as the incidence graph with orienta-
tions assigned to the 1- and 2-cells of any complex of dimension up to 3 [10].
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The Computational Geometry Algorithms Library (CGAL) [14] offers sev-
eral representations of complexes, which are not designed under a common
interface, like in our library. In particular, we consider the Triangulation [31]
and the LinearCellComplex data structures. Note that the former is equivalent
to the HE data structure, while the latter is a dimension-independent vari-
ant of the Combinatorial Maps [36], necessarily embedded in the Euclidean
space. Experimental results in [10, 32] show that these representations, in-
cluding the X-Maps [13], are more expensive than the incidence graph. The
X-Maps are equivalent to the incidence graph for 2-complexes, and are about
1.2 times more verbose than the incidence graph for 3-complexes [10]. The
LinearCellComplex data structure, specialized for 3-complexes, is about twice
more verbose than the OVM data structure [32].

These tools are based on topological data structures, which are more ver-
bose than the incidence graph. This latter represents complexes with a non-
manifold domain. If restricted to simplicial complexes, it may be verbose and
requires a large overhead, when representing manifolds [18]. In particular, it
does not expose non-manifold singularities explicitly, and does not allow for
their fast recognition. In fact, it provides no information regarding the link of
a simplex [19], which must be reconstructed on-the-fly. The time complexity of
this operation is linear in the number of simplices in the star of a simplex [10].

On the contrary, our Mangrove TDS Library, thanks to its plugin-oriented
architecture, supports any topological data structure, including those repre-
sentations, which are efficient in space and in recognizing non-manifold sim-
plices, like the IS and the IA∗ data structures [10]. Our data structures are
dimension-independent, scale well to manifolds, and are more compact than
the incidence-graph [11, 19], and thus than the internal representations of
other libraries. Specifically, our restrictions to simplicial 2-complexes are, re-
spectively, 2.6 and 3.6 times more compact than the OM data structure. If
restricted to simplicial 3-complexes, our representations are, respectively, 1.4
and 3.2 times more compact than the OVM data structure, thus 2.8 and 6.4
times more compact than the LinearCellComplex data structure, respectively.

Experimental results in [10] show that the IS and the IA∗ data structures
are efficient in recognizing non-manifold simplices in the average case. In the IS
data structure, any p-simplex σ is non-manifold if partial co-boundary relation
R∗p,p+1(σ) contains more than one (p + 1)-simplices, one for each connected
component in the link of σ. For instance, the link of any non-manifold vertex
in Fig. 5(a) is formed by two connected components, i.e., two triangles in its
star. In the IA∗ data structure, a vertex v is non-manifold if partial relation
R∗0,p(v) contains more than one top p-simplices, one for each p-cluster in the
star of v, or R∗0,q(v) 6= ∅, for any p 6= q. In the same way, any (p− 1)-simplex
τ is non-manifold if R∗p,p−1(τ) 6= ∅. The star of a non-manifold vertex in
Fig. 5(a) is formed by two 2-clusters, i.e., two triangles in its star. The time
complexities of these operations is O(1). In the remaining cases, it is necessary
to reconstruct the topology of the link in the same way as the incidence graph.
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Our Mangrove TDS Library supports complexes of any dimension, repre-
sented by the IS and the IA∗ data structures. We have exploited a 3Ghz Intel
i7 processor with 16 Gb RAM for analyzing high dimensional versions of the
Sierpinski shape (see Fig. 5(a) for its 2D version). Fig. 5(b) shows the ratios
among their storage costs, expressed in terms of the number of references, with
respect to the dimension of the shape. In our experiments, the IG and the IS
data structures can be built up to dimension 8, while the IA∗ data structure
can be built up to dimension 20. For the sake of clarity, the ratio between
the storage costs of the incidence graph and the IS data structure is shown
separately in Fig. 5(c). These latter tend to be very expensive and they should
not be exploited in high dimensions. On the contrary, the IA∗ data structure
is much more compact for any dimension, e.g., it is, respectively, 103 and 170
times more compact than the IG and the IS data structures for 8-complexes.

(a) (b) (c)

Fig. 5. (a) The 2D version of the Sierpinski shape. (b) Ratios of storage costs for
the incidence graph, IS, and IA∗ data structures (expressed in terms of the number
of references) when representing the Sierpinski shape of dimension up to 8. For the
sake of clarity, (c) the behavior of the IG and IS data structures is shown separately.

7.2 Validation of Ghost Simplices

We evaluate what advantages are achieved by using ghost simplices with the
IA∗ data structure within our framework. Recall that this mechanism can be
applied to any adjacency-based representation [10], like those in [17,20].

Table 2 shows the storage costs of the IA∗, the IG, and the IS data struc-
tures, and the storage cost Cd of graphs Ht (necessary for describing ghost
simplices), expressed in terms of the number of references, for the Sierpinski
shapes of dimension up to 8. In our tests, Cd is less than 1% of the storage cost
for the IA∗ data structure, thus it remains almost unchanged. Recall that Cd
depends only on the dimension d of the complex, thus it is the same for any
simplicial d-complex. This is interesting for complexes of dimension greater
than 3, since ghost simplices are always described by four values, instead of
a variable list of references, e.g., in the cell-tuples [8]. Any cell tuple is more
compact than one ghost simplex for 2- and 3-complexes, but the corresponding
Combinatorial Map results in a verbose representation [10].
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Table 2. Comparisons among the storage cost Cd of auxiliary graphs Ht, and the
storage costs of the IA∗ (SIA∗), IS (SIS), and IG (SIG) data structures, representing
Sierpinski shapes of different dimensions d with s0 vertices and sd maximal simplices.

d Cd s0 sd SIA∗ SIS SIG

2 18 2.8M 5.6M 22.4M 38M 44.8M
3 74 1.4M 4.2M 19.6M 68.6M 92.1M
4 224 0.7M 2.7M 14.9M 104.3M 149M
5 596 0.28M 1.4M 8.96M 123.6M 188M
6 1.5k 0.12M 0.72M 5.3M 143.1M 222.6M
7 3.5k 75K 0.52M 4.3M 228M 365.5M
8 8.1k 34K 0.27M 2.5M 260M 425M

Meanwhile, thanks to auxiliary graphs Ht, the expressive power of the
IA∗ data structure becomes almost equivalent to the expressive power of the
incidence graph and the IS data structure, including for 2- and 3-complexes.
In [10] we have compared extensively the efficiency of algorithms, which an-
swer topological queries, for all data structures we have implemented [38]. Our
tests show that the IA∗ data structure is more efficient than other represen-
tations, even if it does not encode all simplices. Fig. 6 shows mean running
times (in milliseconds) of the BOUNDARY, STAR, and LINK queries on the
IS and the IA∗ data structures for all 3-complexes in our public archive [26].

(a) (b)

(c) (d)

Fig. 6. Mean running times of (a) the BOUNDARY query on any 3-simplex, the
STAR query on (b) vertices and on (c) edges, and (d) the LINK query on a vertex,
if performed on the IS and the IA∗ data structures, representing 3-complexes in [26].
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Specifically, the BOUNDARY query, executed on any 3-simplex, is about
30% faster in the IA∗ data structure. The STAR and the LINK queries,
executed on any vertex, are, respectively, about 30% and 2.5 times faster in
the IA∗ data structure. The STAR query, executed on any edge e, is only 10%
faster in the IS data structure, despite the need to retrieve all top simplices in
the star of e in the IA∗ data structure. The BOUNDARY, STAR, and LINK
queries play a key role in our modeling framework. In fact, the ADJACENCY
query is performed by combining the BOUNDARY and STAR queries. The
IS MANIFOLD query is based on the analysis of the link of any simplex, and
thus on the LINK query.

8 Concluding Remarks

We have introduced the Mangrove Topological Data Structure (Mangrove
TDS) framework, which is a tool for developing implementations of data struc-
tures for simplicial complexes of any dimension under a common programming
interface. It is based on a graph-based representation of connectivity relations,
that we call the mangrove, which can simulate the content of any topological
data structure. We have also provided implicit representations, which we call
the ghost simplices, of those topological entities, which are not directly en-
coded in a specific topological data structure. In order to show the validity of
our contribution, we have implemented and compared six data structures [10],
including the IS [19] and the IA∗ [11] data structures on simplicial complexes.
Our implementations are contained in the Mangrove TDS Library [38], re-
leased in public domain. Our tests show that the majority of the queries are
more efficient when using the IA∗ data structure, even if this latter does not
encode all topological entities. This is due to the ghost simplices, which im-
prove its expressive power (and of any topological data structure with similar
properties) without introducing a relevant overhead. This is important, since
the IA∗ data structure is one of the most compact representations for non-
manifold shapes in the literature [10]. Moreover, these representations are very
efficient for high-dimensional complexes, since they are always formed by the
same number of references, despite the dimension of the complex.

We have demonstrated so far the IA* data structure and other represen-
tations for simplicial complexes. Our current implementation (which is not
ready to be released), already supports cell complexes in which the number
of faces of a cell is a constant when fixing the dimension of the complex, like
unstructured quad and hex meshes. We are extending and testing our data
structures with these complexes.

On the other side, our library does not support editing operators, e.g., stel-
lar operators, edge or vertex-pair collapse on simplicial complexes, and Euler
operators for cell complexes. We are currently working in this direction. In
particular, we are designing and implementing a new set of Euler operators on
cell complexes [15], which preserve the simplicial homology, like Betti numbers
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and generators. These operations are useful to improve the efficiency of ho-
mology computations. We are also developing multi-resolution representations
based on homology-preserving and homology-modifying operators.

Finally, our Mangrove TDS framework may be extended in order to rep-
resent shapes, which are not necessarily discretized by simplicial complexes,
including for applications in high dimensions [3, 5].
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