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Abstract: Simplicial complexes are extensively used for discretizing digital shapes in several applications. A structural
description of a non-manifold shape can be obtained by decomposing the input shape into a collection of
meaningful components with a simpler topology. Here, we consider a unique and dimension-independent
decomposition of a non-manifold shape into nearly manifold components, known as the Manifold-Connected
(MC-) decomposition. We present the Compact Manifold-Connected (MC-) graph, an efficient graph-based
representation for the MC-decomposition, which can be combined with any topological data structure for
encoding the underlying components. We present the main properties of this representation as well as algo-
rithms for its generation. We also show that this representation is more compact than several topological data
structures, which do not explicitly describe the non-manifold structure of a shape.

1 INTRODUCTION

Modeling digital shapes requires efficient repre-
sentations, which integrate geometric, topological,
and semantic aspects. A digital shape is often dis-
cretized by any simplicial complex. A very common
representation of this latter is provided by topolog-
ical data structures, which encode a subset of sim-
plices, and the connectivity information among such
simplices. In the literature, there is a large amount of
research about these representations (De Floriani and
Hui, 2005). In any case, they describe only combina-
torial information of shapes, and do not expose their
relevant components and their connectivity.

In order to overcome these limitations, a shape
may be decomposed into meaningful components,
which are easily distinguished from the remaining
part of the object so as to reduce the complexity of
a shape. The resulting representation highlights com-
ponents of a shape, and their connectivity, namely it
is a structural model. Here, geometric details are ab-
stracted, and this model provides a high-level descrip-
tion of a shape. Hence, this model is a suitable basis
for semantic annotation and reasoning.

Most structural models are defined for manifold
shapes (Shamir, 2008). Informally, a manifold is a
subset of the Euclidean space such that the neighbor-
hood of each point is homeomorphic to an open ball.

Non-manifold shapes do not satisfy this property at
one or more points, which are called the non-manifold
singularities. Non-manifold shapes arise in several
applications, for instance, as the result of the ideal-
ization process during numerical simulations (Thakur
et al., 2009). There is also an increasing interest for
modeling non-manifold shapes, discretized through
abstract simplicial complexes, which are not neces-
sarily embedded in any Euclidean space, like the
Vietoris-Rips complexes (Gromov, 1987).

The most natural decomposition of any non-
manifold shape consists of cutting this latter along
its non-manifold singularities without modifying the
manifold parts. The resulting representation high-
lights manifold components and their connectivity,
and non-manifold singularities are exposed explicitly.
However, this decomposition is possible only for 2-
complexes. In three or higher dimensions, it may in-
troduce artificial ”cuts” in the input shape, and cre-
ate almost manifold components (De Floriani et al.,
2003). In six or higher dimensions, this decomposi-
tion is not feasible, since the class of manifolds is not
decidable (Nabutovsky, 1996).

Here, we describe a dimension-independent ex-
tension of the Manifold-Connected (MC-) decompo-
sition, introduced in (Hui and De Floriani, 2007) for
2D and 3D shapes. This latter is a structural model for
abstract simplicial complexes, which are decomposed



as a collection of Manifold-Connected (MC-) com-
ponents, which form a decidable superclass of man-
ifolds. These components may contain non-manifold
singularities, and thus they cannot be represented by
topological data structures specific for manifolds.

In this paper, we propose a two-level graph-based
representation for the MC-decomposition, which we
call the Compact Manifold-Connected (MC-) graph.
Here, the lower level consists of a topological data
structure, capable to represent non-manifold shapes.
In our experiments we have used the Incidence Sim-
plicial (IS) data structure (De Floriani et al., 2010),
and the Generalized Indexed data structure with Ad-
jacencies (IA∗) (Canino et al., 2011). The upper level
consists of MC-components, expressed through ref-
erences to simplices in the underlying data structure,
and acts in the same way as a spatial index (Samet,
2006). Then, we present an algorithm for extract-
ing the compact MC-graph from any topological data
structure. We also show that the compact MC-graph,
if combined with the IS and the IA∗ data struc-
tures, is more compact than a widely used data struc-
ture, namely the Incidence Graph (IG) (Edelsbrun-
ner, 1987), which does not expose the structure of a
shape explicitly. Finally, we also show that the com-
pact MC-graph, combined with the IA∗ data structure,
is more cost effective than the Initial Quasi-Manifold
(IQM-) decomposition (De Floriani et al., 2003), and
than the Double Level Decomposition (DLD) data
structure (Hui et al., 2006), which contains the IQM-
decomposition of simplicial 3-complexes, embedded
in the Euclidean space E3.

The remainder of this paper is organized as fol-
lows. In Section 2, we present some background no-
tions, while, in Section 3, we briefly discuss related
work. In Section 4, we define the MC-decomposition
for a non-manifold shape in arbitrary dimensions. In
Section 5, we introduce and analyze our compact MC-
graph, while, in Section 6, we present some experi-
mental results. Finally, in Section 7, we draw con-
cluding remarks and discuss future work.

2 BACKGROUND NOTIONS

In this section, we introduce background notions,
which we will use throughout the paper.

A Euclidean p-simplex σ is the convex hull of a
set Vσ of p+1 affine points in the Euclidean space En,
with p≤ n, and p = dim(σ) is the dimension of σ. A
k-simplex σ′, with k ≤ p, generated by k+1 vertices
in Vσ, is a k-face of σ. Here, σ and σ′ are mutually
incident. A finite collection Σ of Euclidean simplices
is a Euclidean simplicial complex if (i) all the faces of

each simplex are in Σ, and (ii) for each pair of sim-
plices σ and σ′ in Σ, either σ∩σ′ = /0, or σ∩σ′ is
in Σ. The maximum dimension d of the simplices in
Σ is the dimension of Σ, which will thus be called a
simplicial d-complex. The domain of a simplicial d-
complex Σ embedded in En, with d ≤ n, is the subset
of En spanned by all the simplices of Σ. A Euclidean
simplicial complex Σ is the geometric realization of
an abstract simplicial complex, which represents the
combinatorial structure of Σ.

The combinatorial boundary b(σ) of a simplex σ

consists of all the faces of σ. The star St(σ) is formed
by all the simplices incident at σ. If St(σ) = /0, then
σ is a top simplex. Top d-simplices are called maxi-
mal. A simplicial d-complex Σ is regular if all the top
simplices are maximal. The link Lk(σ) of a simplex
σ consists of all the faces of the simplices in St(σ),
which are not incident at σ. Two k-simplices are ad-
jacent if they share a (k−1)-face, while two vertices
are adjacent if they are connected by a common edge.

An h-path is any sequence of (h + 1)-simplices
(σi)

k
i=0 such that two consecutive simplices σi−1 and

σi are adjacent. Two simplices σ′ and σ′′ are h-
connected if an h-path (σi)

k
i=0 connects σ′ and σ′′.

A subcomplex Σ′ of any simplicial complex Σ is h-
connected if any two simplices in Σ′ are h-connected.

A (d − 1)-simplex σ in a regular simplicial d-
complex is combinatorial manifold, if at most two d-
simplices are incident at σ. A k-simplex σ, such that
Lk(σ) is homeomorphic to the (d−k)-sphere, is com-
binatorial manifold, otherwise σ is a non-manifold
singularity. A simplicial d-complex, such that all ver-
tices are combinatorial manifold, is a combinatorial
d-manifold (De Floriani et al., 2003). Note that there
are some algorithmically non-recognizable combina-
torial d-manifolds for d ≥ 6 (Nabutovsky, 1996), thus
the class of combinatorial d-manifolds is not always
decidable. A regular (d− 1)-connected simplicial d-
complex Σ, such that the star of each (d−1)-simplex
consists of at most two d-simplices, is a combinato-
rial pseudo-manifold.

3 RELATED WORK

In this section, we briefly discuss some structural
models, specific for non-manifold shapes.

The Selective Geometric Complexes (Rossignac
and O’Connor, 1989) exploit decompositions of non-
manifold shapes, encoded through the IG data struc-
ture (Edelsbrunner, 1987), whose cells can be either
open or not connected. In (Desaulniers and Stewart,
1992) the authors propose a decomposition of non-
manifold shapes into regular parts, providing interest-



ing topological information. In (Falcidieno and Ratto,
1992) the authors discuss the identification of form
features in simplicial shapes, decomposing them into
regular parts. In (Gueziec et al., 1998) the authors
propose a decomposition-based technique to convert
non-manifold shapes into manifolds without address-
ing geometric aspects. In (Rossignac and Cardoze,
1999) the authors improve over this technique by
taking in account also geometry: the key idea is to
split and duplicate non-manifold singularities in or-
der to avoid self-intersections. A further extension
to volumetric shapes is proposed in (Attene et al.,
2009), which applies local updates on the neighbor-
hood of a non-manifold singularity. In (Pesco et al.,
2004) the authors propose a non-unique combinato-
rial stratification of a cell 2-complex on which they
define editing operators. The Initial Quasi-Manifold
(IQM-) decomposition (De Floriani et al., 2003) is a
unique and dimension-independent decomposition of
abstract simplicial d-complexes. A simplicial shape
is decomposed into IQM-components, which are reg-
ular simplicial d-complexes such that any pair of d-
simplices in the star of each vertex is connected by
a (d− 1)-path such that two consecutive d-simplices
share a (d−1)-simplex. A graph-based data structure
for representing the IQM decomposition of any shape
embedded in the Euclidean space E3 is the Double-
Level Decomposition (DLD) data structure (Hui et al.,
2006). In this decomposition, each IQM-component
is encoded through the Indexed data structure with
Adjacencies (IA) (Paoluzzi et al., 1993).

4 THE MC-DECOMPOSITION

In this section, we describe a dimension-indepen-
dent extension of the Manifold-Connected (MC-) de-
composition, initially defined in (Hui and De Floriani,
2007) only for 2D and 3D shapes. This decomposi-
tion is defined on abstract simplicial complexes.

In a regular simplicial d-complex Σ, two d-
simplices σ and σ′ are said to be manifold-connected
if and only if there exists a (d−1)-path joining σ and
σ′ such that two consecutive d-simplices share a man-
ifold (d−1)-simplex. A (d−1)-simplex in Σ is man-
ifold if its star contains at most two d-simplices. We
call a (d−1)-path with such properties as a manifold
(d−1)-path. Figure 1(a) shows a manifold 1-path (in
yellow) between two triangles σ and σ′ (in red) in a
regular simplicial 2-complex, namely a torus. A reg-
ular d-complex Σ, such that any pair of d-simplices is
manifold-connected, is a Manifold-Connected comp-
lex (MC-complex) of dimension d. It is clear that any
manifold is also an MC-complex, like torus in Fig-

ure 1(a), but the reverse is not true. In fact, an MC-
complex may contain non-manifold singularities, like
non-manifold edge e in MC-complex of dimension
3 in Figure 1(b). This shows that the class of MC-
complexes is a superclass of combinatorial manifolds.

e

(a) (b)
Figure 1: (a) A manifold 1-path (in yellow) connecting two
triangles σ and σ′ (in red) in a regular simplicial 2-complex,
which is also an MC-complex of dimension 2. (b) An ex-
ample of MC-complex of dimension 3, which is pinched at
a non-manifold edge e. All the tetrahedra incident at e are
also highlighted (in green).

The MC-decomposition is defined as the decom-
position of any regular simplicial d-complex X into
a collection of MC-complexes of dimension d, called
the MC-components of X , which can be described in
terms of top d-simplices. Manifold-connectivity re-
lation, restricted to top d-simplices in X , defines an
equivalence relation on X . MC-components of X are
the equivalence classes of top d-simplices with re-
spect to the manifold-connectivity relation. Specif-
ically, any top d-simplex σ, called the representa-
tive simplex of X , is equivalent to all the top d-
simplices in X , which are reachable from σ through
a manifold (d − 1)-path. The collection of all the
MC-components in X form the Manifold-Connected
(MC-) decomposition of X . This decomposition is
unique, since any top d-simplex σ in X belongs to
only one MC-component. Several MC-components
in X may have a common intersection, formed by
non-manifold singularities, i.e., a subcomplex of X
of dimension lower than d. Figure 2(a) shows the
MC-decomposition of a regular simplicial 2-complex,
which is formed by three MC-components of dimen-
sion 2, respectively, in red, purple, and green. These
MC-components are connected by two non-manifold
vertices and a non-manifold edge.

A non-regular simplicial d-complex Σ is uniquely
decomposed into maximal regular subcomplexes Σt

p,
i.e., collections of top p-simplices in Σ, with 0 <
p ≤ d. The Manifold-Connected (MC-) decomposi-
tion of Σ consists of the MC-decompositions of all
the subcomplexes Σt

p. Note that each top p-simplex
in Σ belongs to only one subcomplex Σt

p, thus the
MC-decomposition of Σ is unique. Hence, Σ is de-
composed into MC-complexes of dimension p, for
0 < p ≤ d, which may have a common intersec-



(a) (b)
Figure 2: (a) Three MC-components of dimension 2 for a
regular simplicial 2-complex, respectively, in red, purple,
and green. (b) MC-components of dimension 2 (in green)
and 3 (in purple) for a non-regular simplicial 3-complex.

tion, formed by non-manifold simplices. Figure 2(b)
shows the MC-decomposition of a non-regular simp-
licial 3-complex, formed by several MC-components
of dimension 2 (in green) and 3 (in purple), which are
connected by chains of non-manifold edges.

5 THE COMPACT MC-GRAPH

The MC-decomposition for an abstract simplicial
d-complex Σ can be represented through a two-level
data structure. At the lower level, we use any topo-
logical data structure MΣ for non-manifold shapes to
encode Σ. On the contrary, the upper level encodes
the connectivity among MC-components through a
graph-based data structure. An MC-component C in
Σ corresponds to a node, containing a reference to the
representative top simplex of C , while any arc corre-
sponds to the common intersection S of several MC-
components, and contains references to non-manifold
simplices in Σ. The resulting representation acts as a
sort of spatial index (Samet, 2006), imposed on any
topological data structure MΣ. Note that if Σ is mani-
fold, then its MC-decomposition consists of only one
MC-component. Hence, only a reference to one top
simplex in Σ is stored.

Thus, the main difference among several graph-
based representations of the MC-decomposition de-
pends on the encoding of hyperarcs, since nodes are
described uniquely. The first graph-based represen-
tation of the MC-decomposition, satisfying these de-
sign choices, has been proposed in (Boltcheva et al.,
2011), but it may become verbose due to the presence
of cliques (Canino, 2012).

The Exploded Manifold-Connected (MC-) graph,
introduced in (Canino and De Floriani, 2011), is a
hypergraph GE

Σ
= (NΣ,AE

Σ
), such that each hyperarc

corresponds to a non-manifold simplex σ, and con-
nects nσ nodes, corresponding to the MC-components
incident at σ. We denote the collection of non-
manifold singularities in Σ as Σn. Let nE and aE be,
respectively, the number of nodes and arcs in GE

Σ
, then

the storage cost SE of the exploded MC-graph, ex-
pressed in terms of references, is equal to:

SE = nE + ∑
a∈AE

Σ

(1+nσ) = nE +aE + ∑
σ∈Σn

nσ (1)

Figure 3(b) shows the exploded MC-graph, which
represents the MC-decomposition of non-regular 2D
shape in Figure 3(a). In this case, there are three
hyperarcs, related, respectively to non-manifold ver-
tices v1 and v2, and to non-manifold edge e1. For in-
stance, hyperarc in red relates non-manifold vertex v2
and MC-components C1,C2,C3 and C4, which are in-
cident at v2. The exploded MC-graph is robust with
respect the presence of cliques (Canino, 2012). How-
ever, a subset of MC-components may be duplicated
and related to several hyperarcs, increasing its stor-
age cost (Canino, 2012). For instance, in Figure 3(b),
MC-components C1, C2, and C3 are connected twice
by hyperarcs related to non-manifold vertices v1 and
v2. Thus, the number of redundancies must be re-
duced in order to define a compact representation of
the MC-decomposition.

Here, we propose the Compact Manifold-Connec-
ted (MC-) graph, which overcomes all the drawbacks
of the exploded MC-graph. The key idea consists of
grouping together all the hyperarcs of the exploded
MC-graph, which are related to the same subcomplex
of non-manifold singularities, in order to reduce the
storage cost. The compact MC-graph is a hypergraph
GC

Σ
= (NΣ,AC

Σ
), such that any node corresponds to

one MC-component C , while any hyperarc describes
the maximal set of non-manifold singularities, shared
by MC-components C1, . . . ,Ck. Thus, any hyperarc
a = (C1, . . . ,Ck) satisfies the following properties:

i) intersection Σa =
⋂

i=1,...,k Ci, is a subcomplex of
Σ, not necessarily connected;

ii) there is no MC-component Cs 6= Ci, for all i =
1, . . . ,k, such that Σa =

(⋂
i=1,...,k Ci

)
∩Cs.

For each node, corresponding to one MC-component
C , one reference to the representative simplex of C is
stored. For any hyperarc a, ka = k references to MC-
components C1, . . . ,Ck are stored, plus sa references
to non-manifold singularities in Σa. Let nC and aC
be, respectively, the number of nodes and hyperarcs
in GC

Σ
, then the storage cost SC of the compact MC-

graph, expressed in terms of references, is equal to:

SC = nC + ∑
a∈AC

Σ

(ka + sa) (2)

It is clear that the exploded and the compact MC-
graph have the same number of nodes, thus nC = nE .
Figure 3(c) shows the compact MC-Graph, which
represents the MC-decomposition of non-regular 2D



(a) (b) (c)
Figure 3: (a) The MC-decomposition of a non-regular 2D shape is formed by four MC-components, connected through non-
manifold edge e1 and vertices v1 and v2. Some arcs (in red) in the corresponding (b) exploded and (c) compact MC-graphs.

shape in Figure 3(a). The resulting hypergraph is mo-
re compact than the corresponding exploded MC-gra-
ph, shown in Figure 3(b). Here, hyperarc (C1,C2,C3)
(in red) is related to non-manifold singularities v1
and e1, while other hyperarc (C1,C2,C3,C4) is related
only to non-manifold vertex v2, since C4 is not inci-
dent at v1 and e1.

The compact MC-graph, if combined with any
topological data structure MΣ, can be computed in
two steps. In the first step, all the MC-components
are retrieved as described in (Boltcheva et al., 2011).
Recall that the identification of MC-components is al-
ways defined and completely dimension-independent.
We encode the result of the first step as an array L
such that, for each non-manifold singularity σ, any
location L[σ] contains lσ labels of MC-components
incident at σ. Note that this allows defining the ex-
ploded MC-graph immediately. In the second step, all
the hyperarcs in the compact MC-graph are retrieved
by analyzing each location L[σ] through an auxiliary
array B , as follows:

1. If L[σ] contains only one label C , create a tuple
(σ,C ) in B , describing a self-loop related to σ.
Otherwise, sort L[σ] in increasing order as a list
l̄σ, and create a tuple (σ, l̄σ) in B .

2. Sort all the tuples in B with respect to the lexico-
graphic order of lists of labels. Tuples related to
the same subset of labels are stored in consecutive
locations of B .

3. Create and complete a new hyperarc for each sub-
set of MC-components, identified at Step 2.

The identification of MC-components depends on
the topological data structure MΣ, used in combina-
tion with the compact MC-graph. The IA∗ data struc-
ture (Canino et al., 2011) offers the best support for
these operations (Canino, 2012). On the contrary, re-
trieving the hyperarcs does not depend on MΣ. The
time complexity of Step 1 is O(lσ log lσ) for each non-
manifold simplex σ, since L[σ] is sorted. In Step 2, sn

locations of B are sorted, one for each non-singularity
σ in Σ (i.e., in Σn), thus the time complexity of this
step is O(sn logsn). Step 3 can performed in O(1).
Hence, the time complexity required for computing

hyperarcs in the compact MC-graph is linear in:

sn logsn + ∑
σ∈Σn

lσ log lσ (3)

6 EXPERIMENTAL RESULTS

In our experiments, we have combined the com-
pact MC-graph with all the data structures within
the Mangrove Topological Data Structure (Mangrove
TDS) framework (Canino, 2012). This latter is a
framework for the fast prototyping of any topologi-
cal data structure, representing simplicial complexes
without restrictions. A C++ implementation of this
framework is contained in the Mangrove TDS Li-
brary (Canino and De Floriani, 2012), released in
public domain. Here, we focus our attention only on
the Incidence Simplicial (IS) data structure (De Flo-
riani et al., 2010) and the Generalized Indexed data
structure with Adjacencies (IA∗) (Canino et al., 2011),
which offer the best performance with respect to
queries efficiency and storage cost (Canino, 2012).
Note that the IS data structure represents all the sim-
plices explicitly, while the IA∗ data structure offers a
more compact representation by encoding only ver-
tices and top simplices.

In Table 1, we provide experimental comparisons
on our graph-based data structures for a subset of sim-
plicial shapes, freely available from (Hui and De Flo-
riani, 2009). First, we compare the storage costs SE
and SC of the exploded and the compact MC-graph,
respectively. As expected, our results in Table 1 show
that the compact MC-graph is more compact than the
exploded MC-graph: SE ≈ 2×SC, on average. This is
due to the clustering policy of MC-components, con-
nected by hyperarcs of the compact MC-graph, as dis-
cussed in Section 5. Note that the number of hyper-
arcs aC in the compact MC-graph is smaller than the
number aE of hyperarcs in the exploded MC-graph.
For instance, for the 2D shape ”Tower” in Table 1,
aE = 1.4k and aC = 165, while SE ≈ 2.8×SC.

We also compare the total storage costs SC
IS and

SC
IA∗ of the compact MC-graph, combined with the

IS and the IA∗ data structures, respectively, and the



Table 1: Statistics on the MC-decomposition and the corresponding exploded and compact MC-graphs of some simplicial
2- and 3-complexes, freely available from (Hui and De Floriani, 2009). Here, column st shows the number of top simplices
in the input shape, nc is the number of nodes, while aE and aC are, respectively, the number of arcs in the exploded and in
the compact MC-graphs. Columns SE and SC contain the storage costs of our graph-based representations, expressed as the
number of references. In addition, columns SIA∗ , SIS and SIG show, respectively, the storage costs of the IA∗, IS, and IG data
structures. Finally, SC

IA∗ and SC
IS denote the storage costs of the compact MC-graph, combined, respectively, with the IA∗ and

the IS data structures. In other words, SC
IA∗ = SC +SIA∗ and SC

IS = SC +SIS.

Shape st nc aE aC SE SC SIA∗ SIS SC
IA∗ SC

IS SIG
Carter 8k 45 641 48 3.8k 1.2k 52k 75k 53.2k 76.2k 95k

Chandelier 8.1k 130 616 96 2.6k 1k 120k 174k 121k 175k 220k
Pinched Pie 2.3k 120 1.4k 192 4.8k 1.9k 17k 20.5k 18.9k 22.4k 25k

Tower 19k 169 1.4k 165 5.9k 2.1k 124k 175k 126.1k 177.1k 221k
Chime 376 27 29 28 133 127 3.2k 8.5k 3.3k 8.6k 12k
Flasks 4k 8 76 6 300 98 29k 75k 29.1k 75.1k 104k
Teapot 13k 2.9k 1.2k 1k 10.4k 10.1k 85k 163k 95.1k 173.1k 220k
Wheel 1.2k 115 136 88 675 563 9.9k 23.7k 10k 24k 33.4k

Table 2: Statistics on storage costs of the compact MC-graph, combined with the IA∗ data structure, and of the IQM-
decomposition (De Floriani et al., 2003), for several versions of simplicial shape ”Sierpinski”, embedded in the Euclidean
space Ed , with 2 ≤ d ≤ 5. Here, columns s0 and sd contain, respectively, the numbers of vertices and of d-simplices in the
input shape. Columns SC, S∗IA, SC

IA∗ , and SIG are the same as in Table 1. Finally, column SIQM contains the storage cost of the
IQM-decomposition.

Shape s0 sd SC SIA∗ SC
IA∗ SIQM SIG

Sierpinski 2D 88.5k 59k 324k 345k 669k 757k 1.1M
Sierpinski 3D 131k 65.5k 458k 524k 0.98M 1.1M 3.67M
Sierpinski 4D 195.3k 78.1k 664k 781k 1.44M 1.64M 11.6M
Sierpinski 5D 140k 46.6k 467k 559.6k 1M 1.16M 7.7M

storage cost SIG of the Incidence Graph (IG) (Edels-
brunner, 1987). This latter represents all the sim-
plices explicitly, and is commonly used in the ap-
plications (Popovic and Hoppe, 1997). Our experi-
mental results in Table 1 (see columns SC

IS, SC
IA∗ , and

SIG) show that the compact MC-graph is more cost
effective than the incidence graph. In fact, SIG ≈
1.12× SC

IS and SIG ≈ 1.45× SC
IA∗ , for 2D shapes, on

average, while, for 3D shapes, SIG ≈ 1.3× SC
IS and

SIG ≈ 3.2× SC
IA∗ . Columns SC

IA∗ and SIG in Table 2
show how the compact MC-graph, combined only
with the IA∗ data structure, continues to be more cost
effective than the incidence graph in higher dimen-
sions. For instance, SIG ≈ 14.8× SC

IA∗ for simplicial
4-complexes. This result is very interesting, since the
IG data structure, unlike the compact MC-graph, does
not explicitly describe the structure of a shape, and
does not allow for an efficient identification of non-
manifold singularities (Canino, 2012).

Finally, we have also compared our compact MC-
graph, combined with the IA∗ data structure, and
the IQM-decomposition (De Floriani et al., 2003) for
simplicial d-complexes, embedded in the Euclidean
space Ed . For the sake of simplicity, we focus our at-
tention on Sierpinski d-shape, embedded in Ed , which
is formed by s0 vertices and sd d-simplices. Figure 4

shows a simplified 2D version of this shape. Here,
non-manifold singularities occur only at vertices, and
only d + 1 vertices are manifold. Any non-manifold
vertex v is shared by two d-simplices, and each of
them is both a MC- and an IQM-component.

v v v v

Figure 4: Simplified 2D versions of the Sierpinski shape,
embedded in the Euclidean space E2. In this shape, any
non-manifold vertex v is shared by two triangles (in black).

The most relevant difference between these two
representations consists of the different encoding for
the connectivity of subcomponents. Each node of
the IQM data structure contains one d-simplex, en-
coded as an IA data structure (Paoluzzi et al., 1993),
thus it requires (2d+3)sd references. Each arc corre-
sponds to a non-manifold vertex v, and connects two
nodes, one for each d-simplex incident at v. In ad-
dition, for each arc, two copies of v are stored in or-
der to guarantee that any d-simplex is a valid IQM-
component. Hence, the storage cost SIQM of the IQM
data structure is SIQM = (2d + 3)sd + 4(s0− d− 1).
On the contrary, in the compact MC-graph, each sim-
plex is stored only once in the underlying IA∗ data



structure, while, for each arc, references to two MC-
components and to a non-manifold vertex are stored.
Hence, the storage cost of the compact MC-graph
is equal to SC

IA∗ = (d + 2)sd + 5s0 − 4(d + 1). Ex-
perimental results in Table 2 (see columns SC

IA∗ and
SIQM) show that the compact MC-graph tends to be
more cost effective than the IQM data structure for
any dimension. For instance, SIQM ≈ 1.14×SC

IA∗ and
SIQM ≈ 1.16×SC

IA∗ for, respectively, simplicial 4- and
5-complexes. Note that these representations coincide
when encoding manifolds, since they are equivalent to
the IA data structure, plus one additional reference to
a top simplex in the input shape.

In addition, our experimental results in Table 2
(see columns SIQM and SIG) show that also the IQM
data structure is more compact than the incidence
graph in any dimension, e.g., SIG ≈ 8×SIQM for sim-
plicial 4-complexes.

7 CONCLUDING REMARKS

We have presented a structural model for non-ma-
nifold shapes, which are decomposed into a collection
of MC-components, a decidable superclass of mani-
folds of any dimension. We have designed and imple-
mented the Compact MC-graph, a graph-based repre-
sentation for the MC-decomposition (Hui and De Flo-
riani, 2007), which can be combined with any topo-
logical data structure representing non-manifolds.

We have combined the compact MC-graph with
all the topological data structures, which are currently
implemented in the Mangrove TDS Library (Canino
and De Floriani, 2012). Our tests show that the com-
pact MC-graph, if combined with the IS (De Flori-
ani et al., 2010) and the IA∗ (Canino et al., 2011)
data structures, is more compact than the incidence
graph (Edelsbrunner, 1987), which is a widely used
data structure in several applications. However, this
latter, unlike our compact MC-graph, does not ex-
pose the structure of a shape explicitly, and does not
support the identification of non-manifold singulari-
ties efficiently (Canino, 2012). Our tests also show
that the compact MC-graph is more cost effective than
the IQM-decomposition (De Floriani et al., 2003) and
than the DLD data structure (Hui et al., 2006), even
for high dimensions.

There is an increasing interest in quad and un-
structured hexahedral meshes in geometry process-
ing, animation, and numerical simulations. Some data
structures, specific for simplicial complexes, like the
IS and IA* data structures, can be easily extended to
deal with such shapes, since all the simplifying as-
sumptions, that make the two data structures com-

pact in the case of simplicial complexes, hold also
for quad and hexahedral meshes. Thus, also the MC-
decomposition can be extended to such meshes and
also to more general cell complexes .

Finally, we are designing new graph-based rep-
resentations for the IQM-decomposition. The prop-
erties of the IQM components may allow for a very
compact encoding. In fact, an IQM-component is al-
most manifold, thus it may be representable through
very compact data structures, specific for manifolds,
like (Gurung and Rossignac, 2009; Gurung et al.,
2011a; Gurung et al., 2011b), just to mention few.
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