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Arbitrary Shapes

Manifold shapes

Each point has a neighborhood homeomorphic
to either an open ball (internal point), or to a
closed half-ball (boundary point).

Arbitrary shapes (non-manifold / non-regular)

non-manifold singularities, i.e. points at
which the manifold condition is not satisfied;

parts of different dimensions.
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What we propose

Motivation

Complex topology of an arbitrary shape offers valuable information to:

shape annotation and retrieval, identification of form features;

computation of Z-homology (generators, Betti numbers, torsion coefficients).

Topological data
structure

Structural model (shape
decomposition)

Semantic model (future
work)

Our proposal (Manifold-Connected Decomposition)

A structural representation based on topological aspects (manifold-connected).
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Data Structures for Arbitrary Shapes

Context

A lot of data structures for manifold simplicial and cell complexes

Very few for arbitrary simplicial and cell complexes

Related Work

Incidence Graph [Edelsbrunner 1987]: a dimension-indepedent data
structure for arbitrary cell complexes, and restrictions to simplicial
complexes, Incidence Simplicial [De Floriani, Hui, Panozzo, Canino, 2010]

Representations for arbitrary 2D shapes in 3D: from Radial Edge [Weiler,
1985] to Partial Entity [Lee and Lee, 2003];

Dimension-specific data structures for 2D and 3D simplicial shapes;

Representations for cell 2-complexes (decomposition into manifold parts).

Our Contribution [Canino, De Floriani, Weiss 2011, SMI Conf. 2011]

Generalized Indexed Data Structure with Adjacencies (IA∗ data structure)
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Representation of IA∗ [Canino et. al. 2011]

Entities

Vertices;

Top simplices (not on the boundary
of any simplex).

Encoded Relations

R∗k,0 - vertices of top k -simplices;

R∗0,k - one top k -simplex for each
(k − 1)-connected component of
simplices incident at a vertex;

R∗k,k - adjacency relation for top
k -simplices, k > 1;

R∗k−1,k - partial co-boundary
relation for non-manifold
(k − 1)-simplices incident to top
k -simplices.

Properties

Adiacency-based Representation;

Dimension-independent;

Arbitrary shapes;

Agnostic about embedding in
underlying space;

Scalable with respect to manifold
case (reduces to IA);

Efficient retrieval of topological
relations;

Supports editing operations;

Most compact encoding, with
respect to the start of the art.

Plan to release as part of C++
open source meshing library
Mangrove TDS.
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IA∗ data structure - an Example

e

vw

t1 t2

f1

f2f3

f4

f5

f6

R∗0,1(v) = {w}
R∗0,2(v) = {f1, f5}
R∗0,3(v) = {t1}
R∗2,2(f5) = {f6}
R∗2,2(f6) = {f5}
R3,3(t1) = {t2}

R∗2,2(f1) = R∗2,2(f2) = R∗1,2(e)

R∗2,2(f3) = R∗2,2(f4) = R∗1,2(e)

R∗1,2(e) = {f1, f2, f3, f4}

Key observation

Encode collection of top
k -simplices incident to a
non-manifold (k − 1)-simplex as a
single unit and once.

Efficient retrieval of non-manifold
singularities.
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Manifold-Connected (MC) Components

Manifold k -Path

Sequence of k -simplices, where each
pair of simplices is adjacent through a
manifold (k − 1)-simplex.

Manifold-Connected (MC) k -simplices

Connected through a manifold k -path.

Manifold-Connected (MC) Complex

All pairs of MC k -simplices.

Key property

Unique if and only if we consider top simplices.
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Retrieving MC-components

Basic idea

Recognize MC-components for each
sub-complex in Σ formed by top
k -simplices.

Basic step

Proceed by adiacency on manifold
(k − 1)-faces of a top k -simplex σ.

At the end

Each top simplex associated to
ONE MC-component;

Singularities associated to several
MC-components.

Time complexity

Linear in the number of simplices in Σ.
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Manifold-Connected (MC) Decomposition

MC-Decomposition

Collection of MC-components in the input arbitrary shape Ψ;

Discrete counterpart of the Whitney stratification (1965);

MC-components

equivalence classes of top
simplices in Ψ vs MC relation;

share non-manifold singularities;

a singularity may be shared by
more than one MC-component.

Consequence

Suitable to be represented through a two-level graph-based data structure.
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Representing the MC-Decomposition

Two-level Data Structure

the lower level describes an arbitrary shape Ψ through an unique IA∗ data
structure ( topological model);

the upper level describes the connectivity of MC-components in Ψ through a
graph-based data structure (structural model).

MC-graph (N ,A)

each node in N ≡ one MC-component (direct references to simplices in Ψ);

each arc in A ≡ intersection (non-manifold singularities) between two or
more MC-components;

similar to a spatial index overimposed on Ψ.

Variants of the MC-graph (encodings of arcs)

Pair-wise MC-graph (intersection of two MC-components);

Extended MC-graph (intersection of more than two MC-components).
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Pair-wise MC-graph GP = (NP ,AP)

Key Property

Arc ≡ intersection of only two MC-components

Encoding a node c

the dimension k of top simplices in c;

sp
c references to top k -simplices in c;

ap
c references to arcs incident in c.

Encoding an arc a = (c1, c2)

two references to c1 and c2;

lpa references to singularities in c1 ∩ c2.
CCViewer, L. De Floriani, D.
Panozzo, A. Hui, GbPR 2009

Storage cost ∑
c∈NP

(
1 + sp

c + ap
c
)

+
∑

a∈AP

(
4 + lpa

)
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Extended MC-graph GE = (NE ,AE)

Key Property

One hyper-arc for each singularity σ common to
any MC-components

Encoding a node c

the dimension k of top simplices in c;

se
c references to top k -simplices in c;

ae
c references to arcs incident in c.

Encoding an arc connecting any MC-components

a reference to the singularity σ related to a;

lσ references to MC-components sharing σ.
CCViewer, L. De Floriani, D.
Panozzo, A. Hui, GbPR 2009

Storage cost ∑
c∈NE

(
1 + se

c + ae
c
)

+
∑

a∈AE

(1 + lσ)
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Comparisons I

Key observation

These graph-based data structures adapt themselves to the shape complexity:

simplices in the intersection between two MC-components;

number of MC-components incident at a singularity.

In the most cases...

The Extended MC-graph is 30% smaller than the Pair-wise MC-graph, but...



A
Decomposition-
based Approach
to Modeling and
Understanding

Arbitrary Shapes

Comparisons II

Storage Cost (vs IG)

Extended MC-graph + IA∗ ≡ 78% of IG in 2D;

Pairwise MC-graph + IA∗ ≡ 86% of IG in 2D;

both of them + IA∗ ≡ 35% of IG in 3D

Storage Cost (vs IA∗)

both of them are about 40% of the IA∗ in 2D;

both of them are about 38% of the IA∗ in 3D.

both of them expose singularities and
connectivity of MC-components.

In Boltcheva et al. 2011 (GD/SPM 2011)

the size of intersection between MC-components does not exceed 5% of the
input shape;

the dimension of a MC-component is on average 40% of the input shape.
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Iterative Computing of Z-homology [Boltcheva et al. 2011]

Objective

Computation of Z-homology for an
arbitrary shape:

Constructive Homology Theory
[Sergeraert, 2006];

MC-decomposition.

Basic idea

Compute the homology of a shape by
combining:

homology of its sub-complexes;

homology of the intersection of
sub-complexes.

Results

Better than the SNF algorithm.
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Conclusions and Future Work

We have presented the MC-Decomposition, an effective structural model for
several applications:

semantic understanding, annotation, and recognition;

computation of Z-homology.

Topological data
structure (IA∗)

Structural model
(MC-decomposition)

Semantic model (future
work)
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