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Abstract
Modeling and understanding complex non-manifold shapes is a key issue in shape analysis and retrieval. The
topological structure of a non-manifold shape can be analyzed through its decomposition into a collection of com-
ponents with a simpler topology. Here, we consider a representation for arbitrary shapes, that we call Manifold-
Connected Decomposition (MC-decomposition), which is based on a unique decomposition of the shape into
nearly manifold parts. We present efficient and powerful two-level representations for non-manifold shapes based
on the MC-decomposition and on an efficient and compact data structure for encoding the underlying compo-
nents. We describe a dimension-independent algorithm to generate such decomposition. We also show that the
MC-decomposition provides a suitable basis for geometric reasoning and for homology computation on non-
manifold shapes. Finally, we present a comparison with existing representations for arbitrary shapes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Simplicial complexes are commonly used to represent ob-
jects in a variety of applications, including finite element
analysis, solid modeling, animation, terrain modeling, and
scientific visualization. They can model both manifold and
non-manifold shapes, also with parts which are not uniform
in their dimensions. Informally, a manifold (with boundary)
is a compact and connected subset of the Euclidean space
for which the neighborhood of each point is homeomorphic
to an open ball, or to an open half-ball. Objects that do not
fulfill this property at one or more points are called non-
manifold, while they are called non-regular, if they also con-
tain parts of different dimensions.

Existing modeling tools are generally designed to handle
only shapes with a manifold domain, since they are topolog-
ically simpler [DFH05]. But non-manifold and non-regular
objects arise in several applications. For example, in the ide-
alization process for preparing an object for finite element
simulations, regions representing beam or plate behavior are
substituted with one-dimensional lines, or two-dimensional
surfaces, respectively, resulting in objects that contain non-
manifold singularities and parts of different dimensions.
This process provides a representation of the input shape,

which captures only its essential features. Non-manifold and
non-regular shapes are usually discretized through simpli-
cial, or cell complexes, and, thus, efficient representations
for their discretized versions and topological methods for
their analysis are required. The research on non-manifold
and non-regular shapes in the literature has been focusing
on effective data structures for modeling such shapes and on
operators for manipulating it. On the other hand, it is impor-
tant to decompose them into manifold (or almost manifold)
parts, not only for the design of effective data structures, but
also to be able to perform reasoning on non-manifold and
non-regular shapes. This will allow us to deal with their in-
trinsic complexity.

Here, we represent arbitrary shapes discretized as sim-
plicial complexes through a sound decomposition. A de-
composition of an arbitrary shape should remove as many
singularities as possible, and cuts it along singularities,
without breaking it at manifold parts. We are considering
a decomposition into so-called manifold-connected com-
ponents, that we call Manifold-Connected Decomposition
(MC-decomposition). The basic concepts underlying this de-
composition, but limited to 2D and 3D, have been introduced
in [HDF07]. Here, we consider efficient two-level represen-
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tations of the MC-decomposition for an arbitrary shape Σ,
where the upper level consists of a collection of manifold-
connected components, while the lower-level representation
consists of a unique topological data structure describing
each component in Σ. In this paper, we represent an arbitrary
shape through the Generalized Indexed data structure with
Adjacencies (IA∗), a dimension-independent and compact
data structure for encoding arbitrary shapes [CDFW11]. We
also provide dimension-independent algorithms for building
the MC-decomposition of an arbitrary shape.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background notions on simplicial complexes
and topological relations in a simplicial complex. Section 3
reviews related work on topological data structures, and on
shape decomposition. In Section 4, we provide a brief de-
scription of the IA∗ data structure, while in Section 5, we de-
scribe data structures for encoding the MC-decomposition.
In Section 7, we present some experimental results regarding
the MC-decomposition. In Section 6, we briefly describe an
application of the MC-decomposition regarding homologi-
cal computation on arbitrary shapes. Finally, in Section 8,
we draw some concluding remarks.

2. Background Notions

A Euclidean simplex σ of dimension k is the convex hull of
a set Vσ of k+1 linearly independent points in the Euclidean
space En, with 0 < k ≤ n. We simply call a Euclidean sim-
plex of dimension k as k-simplex. Here, k is the dimension of
σ, and it is denoted as dim(σ). Any Euclidean p-simplex σ

′,
with 0 ≤ p < k, generated by a set Vσ′ ⊆ Vσ of cardinality
p+1 is called a p-face of σ. Whenever no ambiguity arises,
the dimensionality of σ

′ can be omitted, and σ
′ is called a

face of σ. Any face σ
′ such that σ

′ 6= σ is called a proper
face of σ. A finite collection Σ of Euclidean simplices forms
a Euclidean simplicial complex if and only if (i) for each
simplex σ in Σ, all faces of σ are in Σ, and (ii) for each pair
of simplices σ

′ and σ
′′, either σ

′ ∩σ
′′ = ∅, or σ

′ ∩σ
′′ is a

common face. The maximum dimension d of simplices in
Σ is called the dimension of the simplicial d-complex Σ. A
subset of Σ that satisfies the definition of simplicial complex
is a sub-complex of Σ. The domain of a Euclidean simpli-
cial d-complex Σ embedded in En, with 0 < d ≤ n, is the
subset of En spanned by all simplices in Σ. The combina-
torial boundary of a simplex σ is the set of all faces of σ.
The star of a simplex σ, denoted with St(σ), is the set of
simplices λ in Σ that have σ as a proper face. In this case,
simplices λ and σ are called incident simplices. Any simplex
σ such that St(σ) = ∅ is called a top simplex. A simplicial
d-complex Σ in which all top simplices are d-simplices is
called regular. The link of a simplex σ, denoted as Lk(σ),
is the set of all faces of simplices in St(σ), which are not
incident at σ. Two k-simplices are adjacent if they share a
k-face, with k ≤ 1: in particular, two vertices are adjacent if
they are both incident at a common edge. An h-path is a se-

quence of (h+1)-simplices (σi)
k
i=0 in a simplicial complex

Σ such that two consecutive simplices in the sequence are
h-adjacent. Two simplices σ

′ and σ
′′ are h-connected when

there exists an h-path (σi)
k
i=0 such that σ

′ is a face of σ0,
and σ

′′ is a face of σk. A subset Σ
′ of a simplicial complex Σ

is called h-connected if and only if any two simplices Σ are
h-connected. Any maximal h-connected sub-complex of Σ

is called an h-connected component of Σ. A regular (d−1)-
connected simplicial d-complex Σ in which the star of all
(d− 1)-simplices consists of one or two simplices is called
a combinatorial pseudo-manifold. A k-simplex in a simpli-
cial d-complex Σ such that Lk(σ) is homeomorphic to the
(d−k)-sphere is manifold. A manifold simplicial complex is
a pseudo-manifold where any simplex is manifold. Figure 1
shows two examples of non-manifold edges and vertices in a
simplicial 3-complex: in both cases, Lk(e) is formed by two
connected components, and thus the edge e is not manifold.
Also vertices v1 and v2 are non-manifold.
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Figure 1: examples of non-manifold edges and vertices in a sim-
plicial 3-complex. (a) A top triangle d f , and two tetrahedra t1 and
t2 are incident at the edge e. (b) None top triangle is incident at the
edge e, shared by two tetrahedra t1 and t2.

Topological relations are suitable for defining data struc-
tures describing simplicial complexes. They describe the
connectivity among simplices, and the choice of which sim-
plices and relations to be encoded determines the effective-
ness of a data structure for specific applications. Let Σ be a
simplicial d-complex, and σ be a p-simplex, with 0≤ p≤ d,
then we define the following topological relations:

• for 0≤ q≤ p−1, boundary relationRp,q(σ) consists of
all q-faces of σ;

• for p + 1 ≤ q ≤ d, co-boundary relation consists of all
q-simplices incident at σ;

• for p > 0, adjacency relation consists of all p-simplices
adjacent to σ.

We call constant any relation, which involves a constant
number of entities. Relations, which involve a variable num-
ber of entities, are called variable. We consider an algorithm
for retrieving a topological relation R to be optimal if it re-
trieves a given relation R in time linear with respect to the
number of entities involved inR.

3. Related Work

As discussed in [DFH05], there are several data structures
for representing manifold shapes. Here, we restrict our at-
tention to data structures for representing arbitrary shapes.
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The first proposal for representing an arbitrary shape is the
Radial-Edge data structure [Wei88], and its variants, as the
Partial Entity [LL01], and Loop Edge [MMH01] data struc-
tures, that can be restricted to simplicial complexes. All such
data structures are verbose and do not scale well to the man-
ifolds [DFH05]. An alternative to previous data structures is
the Incidence Graph (IG) [Ede87], a dimension-independent
data structure for representing cell complexes. The Simpli-
fied Incidence Graph (SIG) [DFGH04], and the Incidence
Simplicial (IS) [DFHPC10] are simplified versions of the
IG data structure, restricted to simplicial complexes. They
encode all simplices, and a subset of the co-boundary rela-
tions encoded in the IG data structure. However, such data
structures may be too verbose, expecially in those applica-
tions that do not require all simplices. It is possible to min-
imize the subset of topological entities to be directly en-
coded. In this context, the Indexed data structure with Adja-
cencies (IA data structure) [PBCF93] is a pioneer work, but
it is limited to pseudo-manifold complexes. The Triangle-
Segment data structure [DFMPS04] is an adjacency-based
representation for simplicial 2-complexes embedded in E3.
It encodes all vertices and top simplices, specifically trian-
gles and wire-edges. It is very compact and allows retrieving
topological relations in optimal time. There are few repre-
sentations for describing arbitrary shapes discretized as 3D
simplicial complexes. Most such representations are limited
to the manifold domain, like the Facet-Edge [DL89], and the
Handle-Face [LT97] data structures. In [LLLV05], a scal-
able data structure for manifold tetrahedral complexes has
been proposed, extending the Corner Table [RSS01]. Ef-
ficient extensions of the Corner Table have been recently
proposed for encoding tetrahedral [GR09], and triangle
meshes [GLLR11]. The Non-manifold Indexed Data Struc-
ture with Adjacencies (NMIA) [DFH03] is an adjacency-
based representation for simplicial 3-complexes embedded
in E3. It encodes all vertices and top simplices, specifically,
tetrahedra, dangling faces and wire edges. It is compact,
and supports the efficient retrieval of topological relations.
In any case, our tests prove that the Generalized Indexed
with Adjacencies (IA∗ data structure) [CDFW11] is the most
cost effective than other dimension-independent representa-
tions, and is even slightly more compact than the existing
dimension-specific ones.

In the literature, approaches to represent non-manifold
shapes have been proposed based on the decomposition of
the shape into manifold components. In [DS92], the authors
proposed a decomposition of solid object into regular parts
(r-sets), providing interesting topological information about
an object. In [FR92], the authors discussed the problem of
identifying form features from the r-set decomposition of a
non-manifold object. In [GTLH98], the authors proposed a
decomposition-based technique to convert an arbitrary shape
into a manifold one. In [PTL04], the authors proposed a
decomposition of a cell 2-complex based on a combina-
torial stratification of the complex, inspired by the Whit-

ney stratification [Whi65]. Selective Geometric Complexes
(SGCs) [RO90] describe objects through cell complexes, en-
coded through the IG data structure, whose cells can be ei-
ther open, or not connected. In [LT97], the authors defined
a stratification of manifold cell 3-complexes, as well update
operators. In [DFMMP03], a decomposition of an arbitrary
shape into nearly manifold components has been defined for
the purpose of defining a compact data structure for non-
manifold shapes discretized as simplicial complexes in arbi-
trary dimensions. The components are regular d-complexes
such that the star of each vertex is (d−1)-connected.

4. The IA∗ Data Structure

The Generalized Indexed data structure with Adjacencies
(IA∗) [CDFW11] is a dimension-independent data structure
that encodes an arbitrary shape, discretized as a simplicial d-
complex Σ. The IA∗ data structure encodes all top simplices
in Σ, plus the following topological relations:

• the boundary relation Rp,0(σ), for each top p-simplex σ,
with 0 < p≤ d;

• the partial adjacency relation R∗p,p(σ), restricted to top
p-simplices adjacent to a top p-simplex σ, with p > 1;

• the partial co-boundary relation R∗p−1,p(τ), consisting of
all top p-simplices incident at a (p−1)-simplex τ, 0< p−
1 < d, on the boundary of more than two top p-simplices;

• the partial co-boundary relationR∗0,1(v), consisting of all
wire-edges incident at a vertex v;

• the partial co-boundary relationR∗0,p(v), with p≤ 2, con-
sisting of one arbitrarily selected top p-simplex for each
(p−2)-connected component in Lk(v).

Relation R∗p−1,p(τ) allows for an efficient encoding for the
adjacency relation R∗p,p(σ) of a top p-simplex σ along one
of its (p− 1)-faces τ. It can be encoded as either a top p-
simplex adjacent to σ along τ, or as a pointer to the list of
all top p-simplices incident at τ. Again, relation R∗p−1,p(τ)
allows detecting non-manifold simplices τ in constant time.
Recall that a (d− 1)-simplex is non-manifold if it is shared
by more than two d-simplices. Hence, a (d− 1)-simplex τ

is non-manifold if R∗d−1,d(τ) 6= ∅. Figure 2 illustrates the
relations encoded by the IA∗ data structure with a simplicial
3-complex. Clearly, the IA∗ data structure, for manifolds,
reduces to the IA data structure, [PBCF93], since there is
not any top simplex of dimension different than d.

The IA∗ data structure encodes only vertices and top sim-
plices in Σ. They can be referenced through a pair (h, i),
called SimplexPointer, where h and i are the dimension and
the unique identifier in Σ of an encoded h-simplex, respec-
tively. We call non-top simplices ghost simplices, and im-
plicitly refer them as the p-face of a top h-simplex in Σ, with
p ≤ h. Thus, a ghost simplex can be referenced through a
tuple (h, i, p, j), called the GhostSimplexPointer, i.e. the j-th
face of dimension p in the top simplex (h, i).
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Figure 2: topological relations encoded by the IA∗ data structure
for an arbitrary shape discretized by a simplicial 3-complex.

Boundary relations can be retrieved in constant time by
exploiting encodedRd,0 relations. Top simplices incident at
a vertex v can be retrieved by performing a breadth-first visit
of all connected components of the link encoded in R∗0,p,
thus exploiting partial adjacency relation R∗p,p, with p > 1.
Time complexity of this operation is linear in the number of
top simplices incident at v. Co-boundary relation of a generic
simplex σ can be retrieved in two steps: first, we retrieve
all simplices incident at one of its vertices, and then we re-
trieve the subset of such simplices incident in all vertices of
σ. Time complexity is dominated by the retrieval of all top
simplices incident at a vertex v of σ, thus it is linear in the
number of top simplices incident at v. Adjacency relations
R∗p,p, restricted to top p-simplices, with p > 1, are already
encoded. The partial adjacency relationR∗1,1(σ) can be eas-
ily retrieved through encoded relationsR∗0,1 andR1,0. Gen-
erally speaking, the adjacency relation for a k-simplex can
be retrieved by combining relationsRk,k−1 andRk,k+1.

5. The Manifold-Connected Decomposition

5.1. Manifold-connected components

Recall that a (d − 1)-simplex σ in a regular simplicial d-
complex Σ is a manifold simplex if and only if there exists
at most two d-simplices in Σ incident at τ. Two d-simplices
σ
′ and σ

′′ are manifold-connected if and only if there exists
a (d− 1)-path joining σ

′ and σ
′′ such that any two consec-

utive d-simplices are adjacent through a manifold (d− 1)-
simplex. A regular d-complex in which every pair of sim-
plices is manifold-connected is a manifold-connected (MC)
complex. Note that any combinatorial manifold is manifold-
connected, but the reverse is not true. Thus, the class of MC
complexes is a decidable superset of combinatorial mani-
folds. Note that the class of d-manifolds is not decidable
for d ≥ 6, [DFMMP03]. Up to dimension 2, the class of
MC complexes coincides with manifolds. MC 3-complexes,
if embedded in E3, are pseudo-manifolds.

A decomposition of an arbitrary shape into simpler parts
can be obtained by splitting it along non-manifold singular-
ities and without introducing artificial "cuts" in the mani-
fold parts. Our analysis starts from regular simplicial com-

plexes.The manifold-connectivity relation between the top
d-simplices in a regular d-complex Σ defines an equiva-
lence relation. The MC-components of Σ are the equiva-
lence classes of the top d-simplices in Σ within respect to
the manifold-connectivity relation. Hence, the collection of
all MC-components in Σ forms the Manifold-Connected De-
composition (MC-decomposition) of Σ. Any component in
the MC-decomposition of Σ may have a common intersec-
tion which is a sub-complex Σ of dimension lower than d.
Figure 3(a) shows the MC-decomposition of a regular sim-
plicial 2-complex, where the four MC-components are con-
nected through chains of non-manifold edges.

(a) (b)

Figure 3: (a) MC-components and (b) the corresponding Pair-wise
MC-graph of the cubes shape. Each MC-component is identified by
its center of gravity in the CCViewer program, [DFPH09].

We describe how to compute the MC-decomposition of an
arbitrary simplicial d-complex Σ. Note that the algorithm is
entirely dimension-independent. We notice that a simplicial
d-complex Σ is uniquely decomposed into a collection of
maximal regular complexes Σk formed by top k-simplices,
with k ≤ d. Thus, the MC-decomposition of Σ is the col-
lection of the MC-decompositions of the maximal regular
sub-complexes Σk.

The computation of the MC-decomposition of Σ starts
by cutting it into its regular sub-complexes Σk. Then, for
each sub-complex Σk, we perform a traversal of Σk, start-
ing from a not visited top k-simplex σ, and retrieve all top
k-simplices in Σk that are reachable from σ by visiting mani-
fold (k−1)-simplices and their incident top k-simplices. All
top k-simplices reachable from σ belong to the same MC-
component. Each MC-component is assigned a unique label
C, and every simplex in this component, including singular-
ities, is assigned C. As a consequence, we can also retrieve
a list of singularities in Σ. Thus, it must be possible to ex-
tract the boundary, the star, and the adjacency relation of
any simplex in Σ, and to identify a non-manifold singular-
ity in Σ. We encode Σ through an instance of the IA∗ data
structure. Algorithm 1 provides a pseudo-code description
of this traversal. At the end of this algorithm, array L has a
number of elements equal to the number of singularities τ in
Σ, and each location L[τ] contains the list of MC-components
incident at τ. The traversal of each sub-complex Σk is a pro-
cess linear in the number of top k-simplices in Σk. At each
step, we analyze all faces of each top k-simplex, looking for
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non-manifold singularities. Generally speaking, these sim-
plices are not encoded in the IA∗ data structure, and thus
they are implicitly represented through their GhostSimplex-
Pointer. An arbitrary shape Σ is uniquely decomposed into
the sub-complexes Σk, thus the time complexity is linear in
the number SΣ of simplices in Σ.

Algorithm 1 RETRIEVE_MC_COMPONENTS(Σ)
Input: an instance of the IA∗ data structure representing Σ

Output: the set of non-manifold singularities in Σ and their
related MC-components

1: let L := ∅
2: for all k = 1, . . . ,dim(Σ) do
3: for all top k-simplex σ in Σ do
4: if σ is not visited then
5: create a new MC-component C
6: let q an empty queue
7: enqueue σ in q
8: while q is not empty do
9: dequeue σ

′ from q
10: if σ

′ is not visited then
11: mark σ

′ as visited
12: add σ

′ in the new MC-component C
13: for all τ in b(σ′) do
14: if τ is not manifold in Σ then
15: L[τ] := L[τ]∪{C}
16: else if dim(τ) = k−1 then
17: enqueueR∗k,k(σ

′) along τ in q
18: end if
19: end for
20: end if
21: end while
22: end if
23: end for
24: end for
25: return L

Here, we present two different graph-based data struc-
tures, namely the Extended MC-graph and the Pair-wise
MC-graph, for encoding the MC-decomposition of an ar-
bitrary simplicial shape Σ. Both data structures are two-
layer representations, in which the upper level describes the
connectivity of the MC-components in Σ, while the second
layer provides a full description of Σ through an IA∗ data
structure. In this way, MC-components are thus expressed
through references to the simplices stored in the second
level, similarly as in a spatial index. The Extended MC-
graph encodes all singularities in Σ in the connection of the
MC-components, and it is suitable to retrieve a semantic de-
composition of Σ, by combining together into closed com-
ponents the MC-components that form 2-cycles (shells) in
Σ. The Pair-wise MC-graph encodes the intersection of two
MC-components, and it is useful, for instance, to iteratively

compute the simplicial homology of an arbitrary shape Σ, as
discussed in Section 6.

5.2. The Extended MC-graph

The Extended MC-graph encodes the MC-decomposition
of an arbitrary simplicial shape Σ as a hyper-graph GE =
{NE ,AE}, where a node in NE corresponds to a MC-
component in Σ, and a hyper-arc in AE corresponds to a
singularity σ in Σ, connecting all MC-components sharing
σ. For each node c, we encode:

• the dimension k of the top simplices describing c;
• the sc references to the top simplices belonging to c;
• the ae

c references to hyper-arcs incident at c.

Thus, the storage cost of a node c is equal to (1+ sc + ae
c)

integers. For each arc a in AE , we encode:

• a GhostSimplexPointer reference to the singularity σ re-
lated to a;

• the lσ references to MC nodes incident at σ.

Thus, the storage cost of an arc a is (4+ lσ) integers. Let n̄
be the number of MC-components in Σ, st be the number of
top simplices in Σ, and aE be the number of hyper-arcs in
the Extended MC-graph. Its storage cost is equal to:

n̄+ st + ∑
c∈NE

ae
c +4aE + ∑

a∈AE

lσ (1)

The Extended MC-graph of Σ can be retrieved in two
steps. First, we apply Algorithm 1 to completely identify
MC-components in Σ. The time complexity of this step is
linear in the total number SΣ of simplices in Σ. As result, we
also obtain the array L, which has a number of locations as
the number of singularities σ in Σ. Each location L[σ] con-
tains lσ identifiers of all MC-components incident at σ. For
each of such locations, we generate a hyper-arc of the Ex-
tended MC-graph related to σ. Thus, the time complexity to
retrieve the Extended MC-graph is O(SΣ).

5.3. The Pair-wise MC-graph

The Pair-wise MC-graph encodes the MC-decomposition of
an arbitrary simplicial shape Σ as a graph GP = {NP,AP},
where a node in NP corresponds to a MC-component in Σ,
and an arc inAP describes the intersection between two MC-
components. For each node c, we encode:

• the dimension k of top simplices describing c;
• the sc references to the top simplices belonging to c;
• the ap

c references to arcs incident at c.

Thus, the storage cost of a node c is equal to (1+ sc + ap
c )

integers. For each arc a in AP, we encode:

• two references to nodes c1 and c2 connected by the arc a;
• lp

a GhostSimplexPointer references to singularities σ be-
longing to the intersection between the nodes c1 and c2.
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Thus, the storage cost of an arc is equal to (4+ lp
a ) in-

tegers. Let aP be the number of arcs in the Pair-wise MC-
graph. The storage cost of the Pair-wise MC-graph is:

n̄+ st + ∑
c∈NP

ap
c +4aP + ∑

a∈AE

lp
a (2)

The Pair-wise MC-graph of an arbitrary shape Σ is re-
trieved in two steps. First, we apply Algorithm 1 to com-
pletely identify MC-components in Σ. The time complexity
of this step is linear in the total number SΣ of simplices in
Σ. As a result, we also obtain the array L, which has a num-
ber of locations as the number of singularities σ in Σ. Each
location L[σ] contains lσ identifiers of all MC-components
Ci, with 0≤ i < lσ, incident at σ. Arcs of the Pair-wise MC-
graph are then retrieved as follows:

1. for each non-manifold singularity σ, generate all possi-
ble pairs of intersections between the MC-components Ci
and C j, and store tuples (σ,Ci,C j) in an array B;

2. sort tuples in B by using the lexicographic order on pairs
(Ci,C j): tuples related to the same pair of labels are
stored in consecutive locations of B;

3. create a new arc for each unique pair of nodes identified
at step 2, and complete all missing data in the involved
nodes and arcs.

LetMΣ be the list of all non-manifold singularities in Σ, and
lσ be the number of MC-components incident at a singularity
σ. Then, the total number of intersections generated at Step
1 is l̄σ = lσ!/(lσ−2)!, for each singularity σ. The time com-
plexity is dominated by Step 2, where all elements of B are
sorted: here, the time complexity is in O

(
∑σ∈MΣ

l̄σ log l̄σ
)
.

Thus, the time complexity required to retrieve the Pair-wise
MC-graph is O

(
SΣ +∑σ∈MΣ

l̄σ log l̄σ
)
.

6. Computing homology of arbitrary shapes

In [BCM∗11], we have designed an iterative and modular
algorithm for computing the simplicial homology of an arbi-
trary shape Σ based on the MC-decomposition, that we call
Mayer-Vietoris (MV) algorithm.

Simplicial homology provides an algebraic representa-
tion of simplicial complexes [Mun99]. Each k-simplex σ in
a simplicial complex Σ is oriented by sorting its vertices,
denoted as σ = [v0, . . . ,vk]. The oriented boundary of σ is
δk(σ) = ∑

k
i=0(−1)k[v0, . . . , v̄i, . . . ,vk], discarding the vertex

vi at each step. A linear combination of oriented k-simplices
is a k-chain. The kth chain-group Ck of Σ is formed by all
k-chains in Σ together with the addition operation, defined
simplex by simplex. An oriented k-simplex is expressed as a
(k−1)-chain through δk, which defines the boundary homo-
morphism δk : Ck→Ck−1. Coefficients of all (k−1)-faces of
k-simplices in δk can be encoded in the kth incidence matrix
of Σ. The chain-complex C∗ of Σ is an algebraic description
of Σ, consisting of the sequence of k-chain groups Ck re-
lated by δk, with k ∈ N. Here, we can recognize the group

of k-cycles, Zk = {c ∈ Ck.δk(c) = 0}, and the group of k-
boundaries, Bk = {c ∈ Ck.∃a ∈ Ck+1|c = λk+1(a). Clearly,
Bk ⊆ Zk ⊆ Ck. Thus, we can define the kth homology group
as Hk = Zk|Bk, which can be described through its genera-
tors, one for every equivalence class inHk. Again, it can be
expressed [Mun99] as:

free group︷ ︸︸ ︷
Z⊕ . . .⊕Z ⊕

torsion group︷ ︸︸ ︷
Z/λ1Z⊕ . . .⊕Z/λpZ

The number of occurrences of Z in the free part is the kth

Betti number βk, while λ1, . . . ,λp are the torsion coefficients.
The most common algorithm for computing homology of Σ

is the Smith Normal Form (SNF) algorithm [Mun99], which
reduces all incidence matrices in Σ to their SNFs.

In our approach, we compute the homology of the union
of two sub-complexes, starting from their homologies and
the homology of their intersection, computed through the
SNF algorithm. The starting point of the MV algorithm is the
MC-decomposition of an arbitrary shape Σ, encoded through
the Pair-wise MC-graph. We have shown that the intersec-
tion between two MC-components never exceeds the 5% of
SΣ. Figure 4 shows generators computed by the MV algo-
rithm on the Carter shape.

(a) (b) (c)

Figure 4: (a) MC-components, (b) the related Pair-wise MC-
graph, and (c) generators computed by the MV algorithm on the
Carter shape [BCM∗11].

7. Experimental Results

First, we demonstrate that our graph-based data structures
are effective tools for representing arbitrary shapes. In Ta-
ble 1, we compare the storage costs of our graph-based data
structures, of the IA∗ data structure, and of the Incidence
Graph, restricted to simplicial complexes. Recall that the IG
data structure is the most common data structure for encod-
ing simplicial and cell complexes in arbitrary dimensions.
Our results show that, in the large majority of cases, the Ex-
tended MC-graph and Pair-wise MC-graph, used in conjunc-
tion with the IA∗ data structure, are more compact than the
Incidence Graph. When encoding 2D shapes, on average,
the Extended and the Pair-wise MC-graphs (plus the IA∗)
require about 78% and 86% of the IG data structure respec-
tively, while both these data structures require about 35%
of the storage cost of the IG data structure when encoding
3D shapes. Notice that the Incidence Graph is respectively
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Shape n aE aP IA∗ IG E P EIG (%) PIG (%) EIA∗ (%) PIA∗ (%)
Carter (2d) 28 641 40 52.4k 95k 11.7k 9.4k 67 65 22 18

Cubes 4 24 4 5k 9k 948 820 66 65 11 9
Tower-wir 970 2.1k 10.7k 109k 194k 31.8k 74.3k 72.6 94.5 29 68

Pinched pie 120 936 1.4k 16.5k 25.7k 10.8k 14.6k 106 121 65 88
Chime (3d) 27 29 47 3.2k 12k 559 653 31 32 17 20

Flasks 8 76 10 32k 104k 4.4k 4.1k 35 34.7 14 13
Pinched torus 2 19 1 7k 23k 948 876 34.5 34 13.5 12.5

Sierpinski 16k 32k 32k 196k 917k 180k 180k 41 41 92 92

Table 1: statistics on our graph-based data structures, encoding a MC-decomposition with n MC-components. Here, we propose storage cost
of a shape encoded with the IA∗ (IA∗) and IG (IG) data structures, and the storage cost of the Extended MC-graph (E) and Pair-wise MC
graph (P), restricted to the connectivity of MC-components, which are respectively formed by aE and aP arcs. Columns EIG and PIG show
respectively the complete storage cost of the Extended and Pair-wise MC-graph (including IA∗), expressed as percentage of IG. Columns EIA∗

and PIA∗ show respectively E and P expressed as percentage of IA∗. These datasets are freely available at [GGG09].

(a) (b) (c) (d) (e)

Figure 5: (a) the non-regular Flasks 3D shape, and the related (b) Extended and (c) Pair-wise MC-graph. (d) The non-regular Pinched pie
2D shape, and the related (e) Pair-wise MC-graph.

1.7 and 3.7 times more expensive that the IA∗ data structure
when considering 2D and 3D shapes. We also compare the
storage cost required for encoding the connectivity of MC-
components with our graph-based data structures. It can be
considered as an overhead for the IA∗ data structure. Our
results show that, for both graph-based data structures, this
overhead is about 40% (with 2D shapes) and 38% (with 3D
shapes) of the storage cost required by the IA∗ data struc-
ture. In any case, it is important to observe that both graph-
based data structures are more expressive than the IA∗ data
structure, because they explicitly expose singularities, and
the connectivity of the MC-components.

We compare the storage costs of the Extended and the
Pair-wise MC-graph, restricted to the connectivity of MC-
components. Our results show that the Extended MC-graph
is more compact than the Pair-wise MC-graph, in most
cases. Specifically, it is about 30% less expensive than the
Pair-wise MC-graph with 2D shapes, and about 1% with
3D shapes. However, in some situations, this does not hap-
pen, as demonstrated in Table 1, because the complexity
of the MC connectivity is reflected in the complexity of
the graph-based data structures. For instance, in the Sier-
pinski shape, all MC-components consist of one tetrahe-
dron, sharing a non-manifold vertex with an other tetrahe-
dron. All singularities are non-manifold vertices, and thus
the two graph-based data structures coincide. Again, in the
non-regular shape Flasks, all singularities can be grouped in
chains of non-manifold edges describing intersection of only

two MC-components, as depicted in Figure 5. Here, the Pair-
wise MC-graph becomes about 7% more compact than the
Extended MC-graph. Conversely, the Pair-wise MC-graph
tends to be strongly-connected if the same set of singular-
ities is shared by more than two MC-components, because
we must encode all possible pairs of intersections between
MC-components, that may be very relevant. For instance,
the Pair-wise MC-graph of the Pinched pie shape, depicted
in Figure 5, tends to be strongly-connected, since the same
chain of non-manifold edges is shared by a large number of
MC-components. Also the Extended MC-graph tends to be
strongly connected, as confirmed by Table 1. However, in
this situation, the Extended MC-graph is about 27% more
compact than the Pair-wise MC-graph. Extended and the
Pair-wise MC-graphs (plus the IA∗) are respectively about
6% and 21% more expensive than the IG data structure.

8. Concluding Remarks

We have addressed the problem of modeling arbitrary
shapes discretized as simplicial complexes through a
decomposition-based approach. To this aim, we have de-
scribed a decomposition of such complexes into manifold-
connected components, that we call the Manifold-Connected
Decomposition (MC-decomposition). We have proposed
two graph-based data structures, namely the Extended MC-
graph and the Pair-wise MC-graph, for encoding the MC-
decomposition. Both data structures are two-layer represen-
tations in which the upper level describes the connectivity
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of MC-components, while the second layer provides a full
description of arbitrary shapes through the IA∗ data struc-
ture. We have performed experimental comparisons and al-
gorithms for generating and navigating such data structures.

In our current and future work, we are developing a
semantic-oriented decomposition for 3D shapes discretized
through simplicial complexes. This decomposition can be
obtained from the MC-decomposition of an arbitrary 3D
shape by combining together the MC-components that form
a 2-cycle (namely a shell). Again, this decomposition can be
used as a data structure for representing 3D shapes.
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