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Abstract

This document is an extented abstract of our Master’s Thesis defended at the D.I.S.I., Universitá degli Studi
di Genova: you can refer to [Can07] for the original version of our Master’s Thesis, written in the Italian
language. In our Master’s Thesis we have analyzed the state of art about the out–of–core simplification tech-
niques and we have designed a prototype of an extensible framework for managing huge geometric models,
called OMSM (short for Objects Management in Secondary Memory).

1 Introduction
In the recent computers the performance of graphics subsystems has been enormously improved, but unfortu-
nately the complexity of graphics applications has also increased. Some gigantic meshes can be easily produced
in many applications, for example by three–dimensional scanning of real objects or by using unstructured tetra-
hedral meshes to represent scalar fields in scientific computing. In order to improve the models accuracy we
need an accurate object sampling: the dimension of our model increases and it often exceeds the RAM size in
a common workstation. Moreover, distributed networks provide an extremely widespread channel of transmis-
sion, useful for sharing the models: their size and the limited amount of available bandwidth could involve very
high waiting times. An important example is given by the models used in the ABA Project (short for Allen Brain
Atlas, refer to [ABA06] for more details): this project deals with the influence regions of genes in the mouse
brain, making them available to the researchers on the Web. There are more than 20,000 area of expressed ge-
nes so the whole map exceeds the available RAM in a common workstation. An other important example is the
Saint Matthew 3D model, recently produced by the Digital Michelangelo Project, at the Stanford University: it
is composed by about 370M triangles (see [LPC+00] for more details). Hence, these meshes introduce severe
overheads and their management has often prohibitive costs, even for the high–performance graphics worksta-
tions. Increasing the RAM size could be a good solution, since its cost is going sharply down, but this approach
raises some questions:

• this solution is not easily scalable because the geometric models could require an arbitrary amount of
space and hence increasing RAM size does not really solve the problem;

• this technique is not feasible because establishing the correct amount of memory is difficult: you should
remember that also the operating system requires some RAM.

Hence, it is important to encode huge models in the most efficient way as possible, allowing the user to analyze
and to display them. The management of a huge mesh should allow some operations on it, for example we can
remember:

• the efficient visualization of the models, useful for selective inspection;

• the mesh editing operations, useful to improve the data quality as described in [BEG94], where the author
defines the requirements that shoud be satisfied by a good mesh;

• the retrieval of some topological properties in the model;

• the execution of specific operations, useful for many aspects: for example we can compute metric mea-
sures on the input model.

This problem has led to many results on mesh simplification and on multiresolution (also called LOD, short for
Level–of–Detail) mesh–based models. We can reduce the model size by applying a set of local simplification
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updates: unfortunately, obtaining the optimal simplification of a mesh is known to be a NP–hard problem, as
described in [AS94]. Hence, many heuristic methods to provide an approximated version of the simplicial com-
plex have been developed: such techniques simplify the geometry and preserve some attributes of the mesh.
You can refer to [PS97] and [LRC+02] for more details about this topic. We can also define a multiresolution
model as a model with the capability of provide some representations of a spatial object at different levels
of accuracy and complexity, depending on specific application needs. According to [PS97] and [DdFM+06],
a multiresolution model encodes the updates performed by the simplification process as a partial order from
which a continuous set of meshes at different LODs can be efficiently extracted. Such techniques have be-
come relevant in several applications and many multiresolution models have been developed: in [Gar99] and
[DdFM+06] the authors describe an historical overview of this type of research and briefly discuss its new
perspectives. In literature we can find many examples of LOD representations for triangular meshes, as those
described in [LRC+02], [dFMPS03] and [dFKP04] and : we can also remember LOD models based on tetra-
hedral meshes, as those described in [DdFM+05] and [dFD06]. However, each multiresolution model is based
on a specific type of local operator and it can be seen as a specific instance of the MT model (short for Multi–
Tessellation), introduced in [Pup98]. In fact, the MT formalizes a multiresolution model as a coarse base mesh
plus a partially ordered set of updates that can be used to obtain refined meshes at variable resolution, inde-
pendently of construction strategy. A dimension–independent representation of the MT has been proposed in
[dFPM97] and implemented in the MT Package (see [dFMP00] for more details).

Unfortunately, we could encounter some problems when we apply these techniques to very large data sets, sin-
ce the input mesh itself can exceed the available RAM (even we are using a compact data structure) and the
simplification algorithms usually require all the data in–core. Hence, using an out–of–core technique is manda-
tory when we want to process an huge mesh: usually, we mantain the entire model in a storage support (a local
hard–disk or a remote storage area network) and then we dynamically load in RAM only the selected sections,
that are small enough to be processed in–core. With this approach we can directly operate on these portions,
by using a limited memory footprint and by removing the limit on the input size: in this case, the I/O among
the memory levels is often the bottleneck, since a disk access is slower than an access in RAM. Furthermore, a
naive management of the external memory may highly degrade the performance: hence, some data structures
and algorithms capable of efficiently working in external memory are needed. These techniques are also called
EM (short for External Memory) techniques and designing them is an active research area that has produced
interesting results in many applications fields. For example, we can remember some techniques used for:

• the models visualization, like those described in [FS01], [CKS02], [SCESL02], [Lin03], [CGG+04],
[CGG+05], [RTBS05] and [CBPS06];

• the EM isosurfaces extraction, like those described in [CSS98], [CS99], [CFSW01] and [Chi03];

• the EM surface reconstruction, like that described in [BMR+99].

Moreover, many EM simplification algorithms have been developed, like those described in [Hop98], [Lin00],
[Pri00], [LS01], [CMRS03], [ILGS03] and [DdFPS06]. Also the LOD representations of a huge geometric mo-
del can exceed the available memory, even if we are using a compact representation: in literature, many out–
of–core multiresolution models have been developed, but most of them, like those described in [Lin03] and
[CGG+04], do not support some topological operators.

The remainder of this document is organized as follows: in the Section 2 we review some background notions
about the objects modeling, while in the Section 3 we propose an overview about the research fields interested
by our thesis. Finally, in the Section 4 we analyze the properties required by a storing architecture for spatial
data and then we design a first prototype for an extensible framework for managing huge geometric models,
called OMSM (short for Objects Management in Secondary Memory).

2 Background Notions
In this Section we review some background notions about the objects modeling: in the Section 2.1 we introduce
the cell and the simplicial complexes, the basic combinatorial structures that formalize the mesh definition,
while in the Section 2.2 we review some notions about the topological relations, that provide the connectivity
information among the different parts of a simplicial complex.
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2.1 Cell and Simplicial Complexes
The first problem that we must solve is the efficient management of the surfaces and the scalar fields in a PC:
in literature, there are two most common approaches for representing a geometric entityO. In the first case, we
give an analytic description of O, while in the second one we decompose O in a set of independent portions.
The analytical representations require many parameters so their use is not simple, especially for huge objects.
However, we can use these techniques only in particular cases, like the fractals modeling: you should refer to
[Jul22], [Man77], [Vos88], [MM91] and [Mus93] for more details.

Thus, we should follow the second approach: in literature, the cell and the simplicial complexes are the basic
combinatorial structures for representing real objects and scalar fields. We limit our analysis to the Euclidean
space E3: you should refer to [dF04] and [Ago05] for more details.

Let x be a vector in Ed (with d ≥ 1) and ‖x‖ the length of x, then we can define the unit d–sphere as Sd = {x ∈
Ed+1.‖x‖ = 1}, the unit d–disk as Dd = {x ∈ Ed.‖x‖ ≤ 1} and the unit d–ball as Bd = {x ∈ Ed.‖x‖ < 1}.

A k–cell in the Euclidean space En, with 1 ≤ k ≤ n, is a subset of En homeomorphic to Bk. Usually k is
called dimension of the Euclidean cell: for example a point is a 0–cell. An Euclidean cell complex in En is a
finite set Γ of disjoint cells of dimension at most d (with 0 ≤ d ≤ n) such that the boundary of each k-cell
γ consists of the union of other cells of Γ with dimension less than k: the set of such cells is denoted with
B(γ). The maximum d of the cells dimension is called dimension of the cell complex Γ, while the subset of
En spanned by the cells of Γ is called domain of the Euclidean cell complex. If a h–cell γ

′
(with 1 ≤ h ≤ k)

belongs to B(γ) then γ
′

is a h–face of γ: if γ
′ 6= γ then γ

′
is a proper face of γ. A cell which does not

belong to the boundary of any other cell is called top cell: if all the top cells are d–cells, then Γ is a regular cell
complex. In an Euclidean cell complex Γ the star of a cell γ is defined as St(γ) = {γ}∪ {γ′ ∈ Γ.γ ∈ B(γ

′
)},

i.e. the set of all the cells that have γ as face, while the link of an Euclidean cell γ is defined as the set of cells
in Γ forming the combinatorial boundary of the cells in St(γ) \ {γ}, i.e. the set of all the faces of the cells in
St(γ) that are not incident in γ.

The simplicial complexes are similar to cell complexes but their cells, called simplexes, are closed and defined
by the convex combination of points in the Euclidean space.

Let k be a non–negative integer then an Euclidean k–simplex σ is the convex hull of k+1 independent points in
En (with k ≤ n), called vertices of σ: usually k is called the dimension of simplex σ. A face σ of a k–simplex
γ is an h–simplex (with 0 ≤ h < k) generated by h + 1 vertices of γ: usually we use the notation σ ⊆ γ.
Two simplexes are called k–adjacent if they share a k–face: in particular, two vertices (0–simplexes) are called
adjacent if they belong to a common edge (1–simplex). A simplicial complex Σ is a set of simplexes in En of
dimension at most d (with 0 ≤ d ≤ n) such that:

• all the simplexes spanned by the vertices of a simplex in Σ are also in Σ;

• the intersection of two simplexes in Σ could be either empty or a shared face.

If all the top simplexes in Σ are d–simplexes then Σ is called uniformly d–dimensional or regular. Moreover,
we say that a h–path in Σ (with 0 ≤ h ≤ d− 1) is a sequence of simplexes σi in Σ such that all the couples of
consecutive simplexes are h–adjacent, while a subset Σ

′
of Σ is a subcomplex of Σ if it is a simplicial complex.

Thus, Σ is called h–connected if and only for each couple of simplexes σ and σ∗ in Σ exists an h–path that
joins σ and σ∗.

A subset M of the Euclidean space En is called a d–manifold (with d ≤ n) if and only if every point p of
M has a neighborhood homeomorphic to Bd, while M is called a d–manifold with boundary (with d ≤ n)
if and only if every point p ofM has a neighborhood homeomorphic either to Bd or to Bd intersected with a
hyperplane in En. IfM does not fulfill these conditions at one or more points, it is called non–manifold.

2.2 Topological Relations
In a simplicial complex, the connectivity information can be expressed through topological relations, providing
an effective framework for a wide spectrum of existing data structures, that can be formally described in terms
of the topological entities and relations that they encode. In this Section we define the topological relations for
a cell complex, since the simplicial complexes can be considered as special instances of cell complexes.
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Let Γ a d–complex and Γj the collection of all the j–cells in Γ with j = 0, 1, . . . , d, then we can define (d+1)2

ordered topological relations by considering all the possible ordered pairs (Γi,Γj) with i, j = 0, . . . , d. If we
denote by ∼km the relation for a pair (γ, γ

′
) in Γk × Γm, then:

• γ ∼kk γ
′
, with k 6= 0 if and only if γ and γ

′
are (k − 1)–adjacent in Γ;

• γ ∼00 γ
′

if and only if exists an 1–cell γ
′′

in Γ such that γ
′′ ∈ St(γ) and γ

′′ ∈ St(γ′
);

• γ ∼km γ
′
, with 0 ≤ m < k, if and only if γ

′ ∈ B(γ), i.e. γ
′

belongs to the boundary of γ: this relation
is called boundary relation;

• γ ∼km γ
′
, with 0 ≤ k < m, if and only if γ

′ ∈ St(γ), i.e. γ
′

is bounded by γ: this relation is called
coboundary relation.

The relations∼kk and∼00 are also called adjacency relations, while the boundary and the coboundary relations
are often called incidence relations. For each relation ∼km we can define a relational operator Rk,m : Γk →
P(Γm) such thatRk,m(γ) = {γ′ ∈ Γm.γ ∼km γ

′}: this operator provides, for each k–cell γ, the m–cells that
are in relation ∼km with γ.

We call constant a relation that involves a constant number of entities, while relations that involve a variable
number of entities are called variable: in a simplicial complex the coboundary and adjacency relations are va-
riable, while boundary relations are constant. Thus, we say that an algorithm for retrieving a topological relation
R is optimal if and only if it retrievesR in time linear in the number of entities involved inR.

3 State of the Art
In this Section we propose an overview about the research fields interested by our thesis. In the Section 3.1
we introduce some in–core simplification algorithms, while in the Section 3.2 we describe the foundations of
the spatial indexing techniques, suitable to handle huge geometric models: finally, in the Section 3.3 we review
some methods that have been proposed in the literature for the simplification of geometric models that cannot
be handled in RAM, i.e. the EM simplification techniques.

3.1 In–core Simplification Algorithms
In this Section we introduce some in–core simplification algorithms: these techniques have an important role,
in fact they reduce the input model to a manageable size. Unfortunately, obtaining the optimal simplification is
known to be a NP–hard problem, as described in [AS94] and a large amount of heuristic methods have been
developed. In the Section 3.1.1 we describe some techniques used for simplifying the triangular meshes, while
in the Section 3.1.2 those for simplifying the tetrahedral meshes.

3.1.1 Simplification of Triangulated Surfaces

In this Section, we review some simplification methods for triangulated surfaces, discussing some different
approaches that have been developed in literature.

One of the most common methods is based on the vertex clustering: this operator spatially subdivides the mesh
vertices into clusters and then substitutes all the vertices within the same cluster with a representative point. An
important example of these methods is the uniform vertex clustering, proposed in [RB93]: this method uses a
regular grid for subdividing the mesh. Such algorithms are fast, but they produce poor quality approximations,
introducing warping effects in the resulting mesh.

An other important simplification technique is based on the vertex decimation, introduced in [SZL92]: in
this method a vertex v̄ is selected for removal, all the faces incident in v̄ must be removed and the resulting hole
is retriangulated. Since retriangulation requires a projection of the local surface onto a plane, this algorithm is
limited to the manifold surfaces: some variants (as that described in [CCMS97]) exist and they are based on
more accurate error metrics, like the localized Hausdorff distance. These techniques are quite efficient in time
and space, but they have some difficulties in preserving smooth surfaces.

An important class of simplification algorithms is based on the edge collapse modification. Given an edge
e = (vs, vt), the edge collapse contracts e into a single vertex vs: if the vertex vs is one of the edge e endpoints,
then this modification is called half edge–collapse, otherwise it is called full edge collapse. In both cases, the
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two faces incident at edge e vanish and the other triangles incident in vs and vt become incident in the new
vertex vs: usually, this operation is indicated with ecol(vs, vt). This update is invertible and the inverse operator
is called vertex split: usually, it is indicated with vsplit(vs, vs, vt). The Figure 1 shows the updates introduced
by the half edge–collapse and the vertex–split trasformations on a triangular mesh.

Figure 1: the result of a half edge–collapse and the vertex–split operators, respectively indicated with ecol and
vsplit. Figure courtesy of [Hop96].

Many algorithms based on the edge–collapse operation follow a greedy procedure to select a sequence of edges
to be collapsed: usually they assign a cost and the edge of lowest cost is contracted at each step. In litera-
ture, many techniques have been developed: here, we review two important examples, namely the Progressive
Meshes and the Quadric Error Metric.

The Progressive Meshes, introduced in [Hop96], are used for the model trasmission on a network: the edge–
collapse cost for each edge is modeled by an energy functional, based on the geometric error. This technique
produces the highest quality results, but it requires huge running times.

The Quadric Error Metric, introduced in [GH97], defines the approximation error in terms of distances from
a set of planes: a symmetric 4 × 4 matrix is assigned to each vertex v and it measures the sum of squared
distances of v from all the set planes. The geometric interpretation of this functional is a quadric: this metric
sacrifices some precision in assessing the approximation error, but it requires short running times.

3.1.2 Simplification of Tetrahedral Meshes

Some of the decimation techniques introduced in Section 3.1.1 can be extended in order to simplify a volumetric
dataset, i.e. a set of points V in the Euclidean space R3 (usually extracted from a volume and connected by
a tetrahedral mesh) and a collection of field values associated to the points in V . In this Section, we review
some simplification algorithms for tetrahedral meshes, but many other techniques have been proposed: for more
details you should refer to [CdFM+04], [DdFM+05] and [dFD06].

The first simplification technique for a tetrahedral mesh has been proposed in [Wil93]: a random subset of
vertices (and their incident tetrahedra) are removed and the resulting hole is filled with the Delaunay tetrahe-
dralization, as described in [dBSvKO97]. This technique is based on uncontrolled subsampling and there is no
control over the accuracy of the simplified mesh.

In [GS98] the authors define the Progressive Tetrahedralization, similar to the Progressive Meshes, that
we have reviewed in Section 3.1.1: this model is based on the edge–collapse operator and proposes many
cost functions to drive the decimation proces. Besides preserving the topological and geometric features as
boundary, this technique elegantly handles previously undiscussed cases of negative tetrahedra (caused by
flipping) and tetrahedron–boundary intersections at concave interiors. However, since the expensive dynamic
mesh–consistency tests for these special cases, its time complexity is discouraging for rapid simplification of
very large datasets.

In [THJ98] the authors propose a tetrahedral collapse as a sequence of three edge–collapses, while keeping
the overall error (based on a unique spline–segment representation of each tetrahedron) below a tolerance ran-
ge. They also discuss problems and difficulties specific to the tetrahedral mesh simplification, presenting a
framework to employ edge–collapse to decimate tetrahedra: however, because the decimation strategy is based
upon successive edge–collapses, the authors mention the overwhelming overheads for maintaining an edge data
structure for massive volumetric datasets. Furthermore, the time complexity of the algorithm presented was not
evident in the results or discussion.

In [CCM+00] the authors present a framework for simplifying a tetrahedral mesh, based on the edge col-
lapse: the local accumulation, the gradient difference and some brute force strategies are explored to predict
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and evaluate errors. Thus, this paper is a good survey for accurate error constraints implementations and offers
various options that need to be tested with rigorous decimation strategies. Moreover, they describe two kinds of
errors that can be introduced during the decimation process like the field error and the domain error: the field
error is introduced by approximating the input dataset with a coarser representation, while the domain error is
caused by the simplification of the complex boundary.

Another approach, called TetFusion, has been presented in [CM02], where the authors introduce a reversible
atomic operation for tetrahedral meshes, the tetrahedron collapse: they iteratively collapse a tetrahedron onto
its barycenter. This technique steers a rapid and controlled progressive simplification of a tetrahedral mesh and
also takes care of mesh–inconsistency problems. This algorithm features a high decimation ratio and inherently
discourages some cases of self–intersection of boundary, element boundary intersection at concave boundary–
regions and negative volume tetrahedra.

3.2 Spatial Indexing Techniques
In this Section we review the most important properties of the spatial indexing data structures, useful to perform
some operations on the spatial data. In literature there has been a tremendous amount of work about these
structures and it is not possible to cover it completely in this document: moreover, in our research we are
interested only in a particular class of indices, called space partitioning trees, since they subdivide the space in
disjoint partitions and this property is suitable for the design of an EM simplification technique.

Emerging database applications may need a large variety of data being supported, in general multidimensional
data: usually, they are a collection of points in high dimensional space and they can represent locations in a
real space as well as more general records. In this thesis, we consider an unstructured collection of geometric
objects, embedded in the Euclidean space: these data are usually called spatial data and a database system
that manage them is called spatial database. Hence, we must introduce some access structures (or indices) in
order to efficiently access the spatial data: these techniques provide an efficient organization of the input data,
in connection with the sorting. Since the nature of spatial data, a spatial indexing structure is needed to achieve
a high degree of success in each of the following aspects:

• efficient query, called also objects retrieval;

• efficient storage – the index overhead should not be greater than the data itself;

• efficient update – the index has to allow objects changes/updates, i.e. removals and insertions, although
these operations could be very expensive.

The relative frequencies of the operations are application–dependent: thus, we must study separately the perfor-
mance of each operation in order to estimate the effect on overall performance of a particular structure. A spatial
indexing structure that can achieve optimal success for all the metrics is difficult to find (if not impossible): for
example, the BSP–tree, introduced in [FKN80], is very efficient in the objects storage and retrieval, but it does
not efficiently support the objects updates. In literature, there has been a large amount of work about the spatial
indexing data structures and it is not possible to cover it in this document: in [Sam06] the author proposes an
excellent survey about these structures, by reviewing the foundations of multidimensional and metric access
data structures. In this paper, we focus our attention on a particular class of indices, called space partitioning
trees: they are hierarchical data structures that decompose the space into disjoint regions, called buckets, in a
similar way than the divide–and–conquer methods. In these data structures each bucket stores all the objects
contained in its corresponding region, thus the most suitable representation is the multi–way tree, where each
node describes a bucket. We call leaf an atomic bucket (i.e. a bucket that is not divided), while we call internal
node an intermediate node (i.e. a bucket that is divided). Usually, the data are contained only in the leaves,
while the internal nodes are useful to guide the data access: however, this property is not always true, since it
can change from an index to an other. In such structures, the number of partitions and the resolution (i.e. the
number of times that the decomposition process is applied) may be fixed beforehand or it may be governed by
some properties of the input data, in fact we can remember:

• the space–driven partitioning trees, where the space is decomposed regardless of the data distribution:
famous examples of such indexes are the region quadtree, the PM quadtree and the PR quadtree (see
respectively [FB74], [SW85] and [Ore82] for more details).

• data–driven partitioning trees, where we split the dataset using some criteria, dependent from the data
distribution: famous examples of such indexes are the point quadtree and the point k–d tree (see respec-
tively [FB74] and [Ben75] for more details).
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The quadtree and the k–d tree are perhaps the most common spatial indexes in the literature, since they have
been described using both the space–driven and both the data–driven approach.

Quadtree – The quadtree is a multdimensional search tree, that can be considered as the generalization of a
binary search tree. It is a multiway tree where each node is divided in 2k hyper–rectangles, where k is the
dimension of the space where we consider the input data: for example, in E2 each node has four children, as
depicted in the Figure 2(a), that shows an example of a point quadtree. You should refer to [FB74] and [Sam06]
for more details about this index.

K–d tree – The k–d tree is a multidimensional search tree, useful for answering queries about a set of points
in the k–dimensional space: it is a binary search tree with the distinction that at each level a different di-
mension (called discriminator key) is tested to determine the dimension in which a branch is made. For the
k–dimensional space at level l, the dimension number l mod k+ 1 is used, where the root is at level 0: thus, the
first dimension is used at the root, the second dimension at level 1 and so on until all the dimensions have been
used and the dimensions are used again beginning at level k. The Figure 2(b) shows an example of a point k–d
tree, while you should refer to [Ben75] and [Sam06] for more details about this index.

(a) (b)

Figure 2: the spatial decompositions and the tree representations for two spatial indexes: (a) a point–quadtree
and (b) a point k–d tree. Figures courtesy of [Sam06].

3.3 EM Simplification Algorithms
Many applications can require very large meshes, consisting of millions of simplexes: despite the rapid im-
provement in the hardware performances, these meshes overload the RAM size in a common workstation,
thus we cannot apply the simplification techniques, discussed in the Section 3.1. Hence, using an out–of–core
technique is mandatory in this case: we can load in RAM only a small portion of the mesh and the expensive op-
erations, as the simplification, must be performed only on data held in–core. In [DdFPS06] the authors review
some methods that have been proposed in the literature for the simplification of terrains models that cannot be
managed in RAM: however, many of these techniques can be extended in order to support also more general
kinds of data (e.g., triangular meshes describing the boundary of 3D objects). The EM simplification algorithms
can be roughly subdivided in three major classes: in the Section 3.3.1 we review some algorithms based on the
vertex clustering, in the Section 3.3.2 we describe some techniques based on the mesh decomposition, while in
the Section 3.3.3 we propose some results based on the mesh streaming technique.

3.3.1 EM Simplification Techniques based on the Vertex Clustering

In this Section we review some EM simplification methods based on the vertex clustering technique, introduced
in [RB93]: such methods are very fast and require a small amount of memory, but they are not progressive. The
resolution of the simplified mesh is a priori determined by the resolution of the buckets grid and no intermediate
representations are produced during the simplification process.

One of the first methods is described in [Lin00], where the author adopts a clustering approach based on a uni-
form grid over a triangular mesh and the quadric metric error for choosing the representative point for each clu-
ster, improving the mesh quality. The current mesh is stored as a redundant list of three vertices positions per
triangle and the simplified mesh is incrementally constructed and kept in–core.

In [LS01] the authors propose further improvements over the method described in [Lin00], by increasing
the quality of approximation and by reducing memory requirements. This technique stores the intermediate re-
sults on disk instead of in RAM and in this way it removes the bottleneck of having enough memory for the
intermediate steps: the whole process is made essentially independent of the available memory on the host

7



computer. This approach also improves the quality of the mesh, preserving surface boundaries and optimizing
the position of the representative vertex of a grid cell.

The method presented in [Lin00] has also been extended in [SG01], where the authors design a simplifica-
tion algorithm, that executes two steps over the input mesh. During the first step the mesh is analyzed and an
adaptive space partitioning, based on a BSP–tree, is performed: this structure is an important spatial index intro-
duced in [FKN80]. Using this approach, we can adapt the distribution of grid cells to the more detailed portions
of the surface. In the following step, the algorithm applies the vertex clustering to the cells produced at the first
step: the accuracy of the output mesh is better than the other methods, but this algorithm requires more RAM
than the technique described in [Lin00] since it maintains a BSP–tree and additional quadrics information.

A hybrid technique is described in [GS02], by combining the vertex clustering and the iterative edge–
collapse in two steps: in the first step, this technique performs an uniform vertex clustering as in the methods
described above, while in the second step some edge–collapses are iteratively performed in order to simplify
the mesh, guided by the quadric metric error. This method assumes that the mesh obtained after the first step is
small enough to perform the second step in main memory.

3.3.2 EM Simplification Techniques based on the Mesh Decomposition

In this Section we review some EM simplification technques based on the mesh decomposition: these methods
split the input mesh into separate patches that are small enough to be simplified individually in–core by using a
conventional simplification algorithm, as those described in the Section 3.1. Great attention must be paid to the
patches boundaries in order to maintain the topological consistency of the simplified mesh: these techniques
are progressive and allow to create a dependency relation among the updates.

One of the first algorithms has been described in [Hop98] and it is designed for the simplification of terrain
models: in this method, the input mesh is hierarchically divided in blocks and then each block is simplified by
collapsing edges that are not incident on the boundary of a block. Once that each block has been simplified, the
algorithm traverses bottom–up the hierarchical structure by merging sibling cells and again simplifying. The
Figure 3 shows a rough scheme of this simplification process.

Figure 3: a rough scheme of the simplification technique described in [Hop98]. Figure courtesy of [Hop98].

This approach has either a bottleneck on the output size (because a complete bottom–up traversal of the struc-
ture is required to remove elements incident on the inter–cell boundaries) or on the simplification accuracy
(intermediate results present unpleasant runs of original high resolution elements located on cells boundaries).
Moreover, this approach cannot be extended easily to support other geometric processing tasks, because the
elements shared by adjacent blocks cannot be modified unless the blocks are merged. In [Pri00] the author has
generalized this method to arbitrary triangular meshes, mantaining a similar organization: unfortunately, the
new method suffers the same disadvantages over the inter–blocks boundaries.

In [ESC00] the authors propose an algorithm that works on irregularly distributed data and subdivides
the mesh at full resolution into patches. Each path is described by an indexed mesh with explicit topology
and all the edges (with the adjacent faces) are kept into an external memory heap, ordered according an error
criterion based on the edge length, although the edge length does not ensure high accuracy in simplification.
However, implementing an ordering criteria based on the QEM (described in [GH97]) is not easy, due to the
complex evaluation of the QEM for each edge. Given k edges on top of the heap (k is a value depending
on the core memory size), this method loads in RAM the associated adjacent faces pairs, reconstructs the
mesh portions spanned by these edges and collapses all the edges that have their incidents faces in RAM. This
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approach reaches a good computational efficiency if we are able to load in RAM large contiguous regions:
unfortunately, the shortest edges could be uniformly scattered and it could happen that many spanned sub–
meshes loaded in RAM consist of few triangles, therefore requiring a very frequent loading/unloading of very
small regions. A positive advantage of this method is that the simplification order performed by the external
memory implementation is exactly identical to the one used by an analogous in–core solution, thus the mesh
produced by the external memory implementation is identical to the one of the in–core solution.

Another important technique based on the space partitioning is described in [CMRS03], where the authors
propose a simplification method for triangle meshes embedded in E3 by using the OEMM data structure (short
for Octree–based External Memory Mesh): the octree subdivision stops when the set of triangles associated to
a leaf fits in a disk page. Each mesh portion, contained in a leaf, is independently simplified through iterative
edge collapses: once simplified, the leaves can be merged and simplified further, like in [Hop98]. The problem
on the boundaries among the portions has been resolved: the subdivision phase is performed using octree–
based regular splits and the elements spanning adjacent cells are identified in the construction phase. Hence,
the boundary elements contained in the interior of the loaded region can be treated as any other element thanks
to a tagging strategy, that allows an easy detection and management of the elements located on the boundary
of the current region.

3.3.3 EM Simplification Techniques based on the Streaming Meshes

In this Section we review some EM simplification methods based on the sequential analysis of a mesh during
the scanning of the input file that contains the mesh itself, providing a compact representation of the input data.
The philosophy underlying the streaming techniques is that a strictly sequential processing order is followed,
by mantaining the input data locality: each element is loaded only a time in RAM and the result is written
to secondary memory as soon as possible. The major problem is dealing with the initial format of the input,
that cannot guarantee the coherence of the data: the current mesh formats are usually indexed and do not
impose any constraints on the order of vertices and simplexes: for example, the three vertices of a triangle can
be located anywhere in the vertices array and need not be close to each other, while adjacent triangles may
reference vertices at opposite ends of the array. This flexibility was convenient for in–core meshes, but has
become an important bottleneck with huge datasets: one approach to overcome the problems associated with
indexed data is working on dereferenced simplexes soup, which streams from disk to memory in increments
of single simplexes and either attempts to handle their connectivity. The main idea is decomposing the input
model into portions, called Streaming Meshes, mantaining the data coherence: this objective could be reached
by interleaving indexed vertices and triangles and providing information when vertices are last referenced.

In [IL05] the authors define the underlying theory for working with this new representations: in particular,
they describe desirable qualities for streaming meshes, some methods for converting from a traditional format
to a streaming one and several EM algorithms for reordering meshes with poor coherence. Furthermore, they
provide metrics that characterize the coherence of a mesh layout and suggest appropriate strategies for improv-
ing the streamability i.e. an intuitive measure of the longest duration of a mesh portion in RAM. The Figure
4 shows two versions of Lucy model, obtained by The Stanford 3D Scanning Repository (see [Sta94]): the
colors scale indicates the streamability of each triangle. The Figure 4(a) shows the original layout, while the
Figure 4(b) shows the layout after reordering the vertices and triangles arrays: as we can easily understand, the
coherent regions are very fragmented in the original model and many I/O operations are needed to analyze it.

The streaming meshes generalize the Processing Sequences, introduced in [ILGS03]: a processing sequence
represents a mesh as an interleaved ordering of indexed triangles and vertices, by providing a mechanism for
storing user data on the stream boundaries (e.g. for mapping between external and in–core vertex indices). The
authors also design a simplification technique for triangular meshes, based on the processing sequences and
similar to that described in [Lin00]. Mesh access is restricted to a fixed traversal order, but the full connectivity
and the geometry information is available for the active elements, thus the simplification step is performed only
on the in–core portions.

In [VCL+07] the authors extend these streaming algorithms to the tetrahedral meshes, making some im-
provements: first, the algorithm converts standard indexed meshes and optionally reorders them in order to
improve their streamability and then some portions of the streaming mesh are incrementally loaded into a
fixed–size main memory buffer and then simplified using the quadric–based method. When the in–core por-
tions of the mesh reach the user–prescribed resolution, the simplified elements are outputted to disk or to a
downstream processing module. This algorithm keeps just a subset of the tetrahedra in–core and thus we do not
know the entire mesh connectivity: to ensure that the simplified mesh is crack–free, we also store the boundary
(called stream boundary) between the set of tetrahedra currently in RAM and all the remaining elements on the
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storage support. Furthermore, this algorithm does not allow to collapse any edge that has one or both vertices
on the stream boundary, hence the output mesh will have unsimplified areas along the stream boundaries: to
avoid this problem the authors follow the algorithm proposed in [WK03]. According to our experience, this is
the first algorithm that provides an EM simplification method for the tetrahedral meshes.

(a) (b)

Figure 4: examples of coherence in the mesh layout and streamability distribution of triangles. The original
layout (a) is incoherent hence the colors distribution is very fragmented, while the layout after reordering of
simplexes (b) is coherent, in fact the colors fragmentation is limited. Figures courtesy of [IL05].

4 An Extensible Storage Architecture
In this Section we analyze the properties required by a storing architecture for spatial data and then we design
a first prototype of an extensible framework for managing huge geometric models, that we call OMSM (short
for Objects Management in Secondary Memory) framework.

As we have already observed in the Section 3.2, the emerging database applications require new indexing struc-
tures beyond the B–tree, a famous database index introduced in [BM72]: in fact, the new applications may need
different index structures to suit the big variety of data being supported, i.e. video, images and multidimensional
data. In this paper we limit our analysis to spatial data, i.e. data with a location component: thus, efficient data
structures are highly needed to facilitate access and to support the different spatial queries against these data.
Many indexing techniques, aiming at solving disparate problems and optimized for different types of spatial
queries, have appeared lately in the literature and each technique has specific advantages and disadvantages,
that make it suitable for different application domains and datasets. Hence, the task of selecting an appropri-
ate access method, depending on particular application needs, is a rather challenging problem: a spatial index
library that can combine a wide range of indexing techniques under a common application programming inter-
face can thus be a valuable tool, since it will enable efficient integration of a variety of structures in a consistent
and straightforward way. The major issue of such an undertaking is that most part of the indexing structures
have a wide range of distinctive properties, difficult to compromise under a common framework. Another im-
portant issue is that the indexing structures should provide the functionalities for exploiting the semantics of
application–specific data types through easy customization, while making sure that the meaningful queries can
still be formulated for the specific data types. Moreover, it is crucial to adopt a common programming interface
in order to promote reusability, easier maintenance and code familiarity, especially for large projects where
many developers are involved. A such framework should capture the most important design characteristics
into a concise set of interfaces: this design will help developers to concentrate on other aspects of the client
applications, promoting faster and easier implementation. The interfaces should be easily extensible in order
to address future needs without necessitating revisions to client code: a similar framework should provide a
dynamically extensible plugins system that can support not only the existing access techniques, but also the
future ones.

In literature many examples of generic frameworks for spatial indexes have been proposed: for example, we
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can rembember the XXL (short for the eXtensible and fleXible Library, see [vdBBD+01] for more details). This
framework offers some components for the development and for the integration of spatial index structures, for
the access to raw disks and for the optimization of a query. Moreover, the XXL can support a large variety
of advanced spatial queries by generalizing an incremental best–first search query strategy: unfortunately, its
querying interfaces are index–specific thus if we define custom queries, we must implement them by hand,
modifying all the affected index structures. Moreover, the XXL library does not support different storage re-
quirements and does not decouples the index structure implementation from the storage system: in other words,
it is not easily extensible and customizable.

The GiST (short for Generalized Search Tree, refer [HNP95] for more details) library contains an other frame-
work relevant for our research: it generalizes a height–balanced and single–rooted search tree with variable
fanout. In essence, the GiST is a parameterized tree that can be customized with user–defined data types and
functions defined on such types, that guide the structural and searching behavior in the tree. Each node consists
of a set of predicate/pointer pairs: the pointers are used to link a node with its children, while the predicates are
the user–defined data types stored in the tree. The user, apart from choosing a predicate domain (e.g., the set
of natural numbers, rectangles or a unit square universe and so on), must also implement some methods (i.e.,
consistent, union, penalty and pickSplit), that are used internally by GiST to control the behaviour of the tree.
By using a simple interface, GiST can support a wide variety of search trees and their corresponding querying
capabilities, including B–trees (see [BM72] for more details) and the R–trees (see [Gut84] for more details).
Unfortunately, the class of space partitioning trees, rewieved in the Section 3.2, is not supported by the GiST:
moreover, this project is not supported anymore and the current implementation does not work over the recent
platforms.

The SP–GiST (short for Space–Partitioning GiST, see [AI01] for more details) is an important extension of
the GiST: it provides a novel set of external interfaces in order to furnish a generalized index structure that
can be customized to support a large class of spatial indexes with different structural and behavioral properties.
This framework allows the creation of the space–driven and the data–driven partitioning structures and also
of balanced and unbalanced structures: the SP–GiST also supports the k–D trees, the tries, the quadtrees and
their variants (see respectively [Ben75], [Fre60] and [FB74] for more details). Unfortunately, the SP–GiST is
designed to work only inside the PostgreSQL database server and it supports only bidimensional data.

Thus, according to our experience and by analyzing the current solutions, the design of a storage architecture
for spatial objects should be based on these three aspects:

• a spatial index for improving the operations performance, in particular a space partitioning tree;

• the subdivision of the index nodes into clusters according to a certain policy: for us, a cluster is a set of
nodes that we can consider as an atomic unit (according with a nodes clustering policy). In this context,
an I/O operation must be performed on a single cluster.

• the dynamic management of clusters among a storage support and the RAM.

These three aspects can be considered independent and the techniques used for their management may be com-
bined, obtaining different storage architectures. Some storage architectures, currently available in literature,
provide a range of a–priori choices, especially as regards the last two aspects, while it is possible to customize
only the indexing structures: for example, the GiST framework allows only to customize the indexing structures
and can manage only a local database, i.e. resident on the local machine. Unfortunately, a similar framework
is not available, according to our experience: it would be very attracti-
ve from the point of view of database system since the implementation of a full fledged indexing structure with
the appropriate concurrency and recovery mechanism is not a trivial process.

Towards the definition of a completed framework with the properties that we have discussed in this Section, we
introduce a rough prototype of the OMSM (short for Objects Management in Secondary Memory) framework:
it can manage a huge set of spatial objects in a storage support, embedded in the same Euclidean space. In
this structure, we consider each of the previous aspects as independent from the other and we manage it into a
specific component, called OMSM layer: as consequence, the OMSM structure is modular and easily extensible,
adapting itself to many storage needs. The Figure 5 shows the complete organization of the OMSM layers.

The layers that belong to the OMSM framework are:
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• the SPDataIndex component, where the user can choose the space partitioning tree to be used and can
execute queries and updates.

• the NodeHandler component, where the user can modify the nodes clustering policy to be used, useful
for minimizing the number of I/O operations.

• the NClusterStorager component, where the can choose techniques used to manage the clusters, directly
on the storage support.

Figure 5: the layers of the OMSM framework: the dotted lines with the database clusters remark that we do not
know its services set because we do not know how it works, until we have chosen it.

The SPDataIndex layer – this layer is the most external one in the OMSM architecture and it allows the user to
interact with the data stored in the architecture, by offering a set of services and by hiding the implementation
details and specific techniques used for the spatial objects management. It is simple to understand from the
Figure 5 that once created a particular instance of this layer, it is no longer interesting to recall the offered
features and an user can use this layer without knowing anything about its structure: this design choice makes
easier to build applications that interact with the stored data. In this layer, the user can specify which spatial
index must be used and this choice is totally transparent for the other layers of the OMSM framework. The
underlying idea is to keep in RAM only the tree root, while the nodes will be dynamically loaded from the
inferior layers, if it is needed. In this layer, the data model is described by a generic spatial object that could
be indexed by using its representative point as key: this point describes the object properties and identify it, for
example it could be its center of gravity.

The NodeHandler layer – this layer has perhaps the major role in the OMSM architecture, since it subdivides
the spatial index nodes into clusters according to a certain policy: for us, a cluster is a set of nodes that are
considered as an atomic unit (according with a nodes clustering policy) and each I/O operation, delegated to
the NClusterStorager layer, must be performed on a single cluster. In this layer, the data model is described by
the OMSM Node, that includes not only the indexing structures nodes, but also a particular node, called OMSM
Super–Node: it contains information about the current configuration, like the plugins to be loaded and so on.
Consequently, the NodeHandler layer can manage OMSM nodes without worrying about their content: the only
constraint to be satisfied involves the OMSM Super Node: the cluster used for its storage cannot handle any
other nodes and it has a specific management system. This design choice allows an efficient implementation
of the OMSM architeture: for example, this cluster will be always mantained in RAM, while the other clusters
could be destroyed since a LRU cache is used in order to mantain in RAM only the most recently used clusters.

The NClusterStorager layer – this layer manages the low–level representations of the nodes clusters, by oper-
ating on a storage support: the type of support is not important, for example it can access to a remote database
or write each cluster on an independent file. In this layer, the data model is described by a generic code for the
cluster identification and the sequence of bytes that represents each cluster. In such way, we can discard the
data structure implementation details and allow additional operations on the bytes sequence, like the encryption
or compression.
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The implementation of the OMSM framework has required a considerable amount of work and it is contained
in the OMSM Library, written in C++: this library satisfies the POSIX standards and it is supported by the most
common platforms like GN/Linux, Apple MacosX and Microsoft Windows1 Moreover, this library also contains
a set of plugins for each layer:

• some plugins for the point–quadtree, the point k–d tree, the hybrid PR k-d trie and the hybrid PR quadtrie:
you can refer [Sam06] for more details about these indexing structures;

• a plugin for the single–node policy clustering policy (i.e. a cluster contain only one node);

• a plugin for storing clusters in an embedded database, by using the famous Oracle Berkeley DB (see
[Bdb06] for more details).

Each plugin can be dynamically loaded in the OMSM framework, by using an XML description: thus, the rough
prototype that we have developed can be expanded in many directions. This library will be released as soon as
possible with an Open Source Licence.

Our work is orthogonal to the existent libraries in literature and their variants: these frameworks address the
implementation issues behind new access methods by removing the burden of writing structural maintenance
code from the developer. The OMSM framework does not aim to simplify the development process of the
indexing structures per se, but more importantly, the development of the applications that use them: in that
respect, it can be used in combination with all other indexing structure developer frameworks. Employing the
OMSM is an easy process that requires the implementation of simple adapter classes (the OMSM plugins), that
will make indexing structures compliant to its interfaces, conflating these two conflicting design viewpoints.
Ostensibly, existing libraries can be used for simplifying client code development and share, indeed, some
similarities with the OMSM, (especially in the interfaces for inserting and deleting elements from the indices)
but, since they are not targeted primarily for that purposes, they are not easily extensible (without the subsequent
need for client code revisions), they do not promote transparent usage of different indices (since they use index
specific interfaces) and they cannot be easily used in tandem with any other index library (existing or not).

5 Conclusions
Many applications can require very large meshes, consisting of millions of simplexes: despite the rapid im-
provement in the hardware performances, these meshes often overload the RAM size of a common workstation.
The simplification techniques are a good solution for this problem, since they reduce the size of the input
models: unfortunately, we encounter some problems with these techniques, since the simplification algorithms
usually require all the data in–core, while the input mesh itself can exceed the available RAM, even we are
using a compact data structure. Hence, using an out–of–core technique is mandatory when we want to process
an huge mesh: usually, we mantain the entire model in a storage support (a local hard–disk or a remote storage
area network) and then we dynamically load in RAM only the selected sections that are small enough to be
processed in–core. With this approach, we can directly operate on these portions, by using a limited memory
footprint and by removing the input size limit: in this case, the I/O among the memory levels is often the
bottleneck because a disk access is slower than an access in RAM. These techniques are also called EM (short
for External Memory) techniques and designing them is an active research area that has produced interesting
results in many applications fields. In this thesis we have analyzed the state of the art about the out–of–core
simplification techniques, by focusing our attention of those techniques based on the spatial decomposition:
moreover, we have analyzed the properties required by a storing architecture for spatial data and then we have
designed a rough prototype of an extensible framework for managing huge geometric models, called OMSM
(short for Objects Management in Secondary Memory).
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