
An Extensible Framework for Modeling Simplicial and Cell Complexes

Motivations

- Need to represent *simplicial* and *cell complexes* of any dimension and kind.
- > Retrieving *topological information efficiently*.

- Several *data structures* have been developed in the literature.
- > A tool for their *fast design and implementation* under a common application interface lacks:
- *avoiding* to design and implement topological data structures from scratch;
- performing *coherent comparisons* regarding their performance.

Key Idea

- A common representation of any data structure *(prototype)*, customized to *simulate* a specific representation *without a relevant overhead*.
- Common prototype is dynamically *replaced at run-time*, if necessary (*plugins*) in order to:
 - exploit the *most suitable representation* wrt the storage cost and the efficiency of queries;
 - *hide* internal details of the tool and guarantee a short learning curve.

> Implicit representations of cells through ghost entities.

Comparisons with Other Frameworks

- Existing tools exploit a *fixed representation*, that cannot be easily replaced, thus it is *not flexible*.
- > Internal representations are usually *equivalent* to the *Incidence Graph* and to extensions of the *Half-Edge* data structure.
- This means large *overhead* for manifolds and *not efficient* identification of non-manifold singularities.

Type of Dime Com Repre Repre

Identifica

Manifold

David CANINO – canino@disi.unige.it

The Mangrove Topological Data Structure (Mangrove TDS) Framework

> *Rapid prototyping* of topological data structures for *cell* and *simplicial complexes*, that are described by graph-based representations, called *mangroves*;

Mangroves

Graph-based representation of data structures:

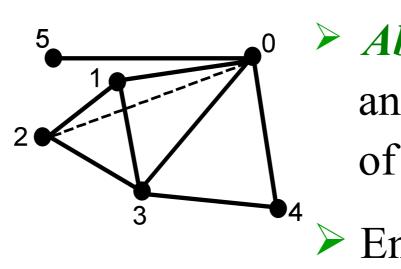
> *nodes: simplices* and *cells*, directly encoded in the data structure;

> arcs: topological relations, directly encoded in the data structure.

> A topological data structure is a *subgraph* of the mangrove representing *all* cells and topological relations in the cell complex.

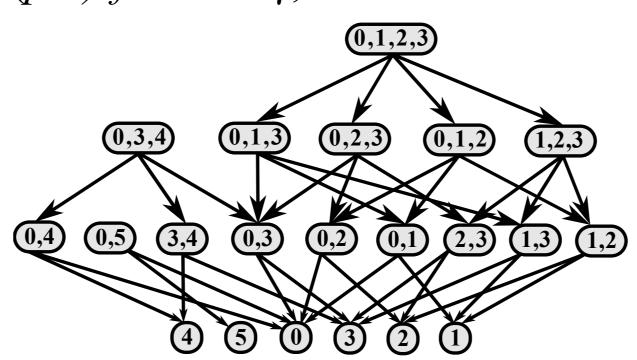
Ghost Entities

A p-cell y may be either a *top p-cell*, or a *p-face* of any top *t*-cell γ ' in its star (with $p \leq t$).

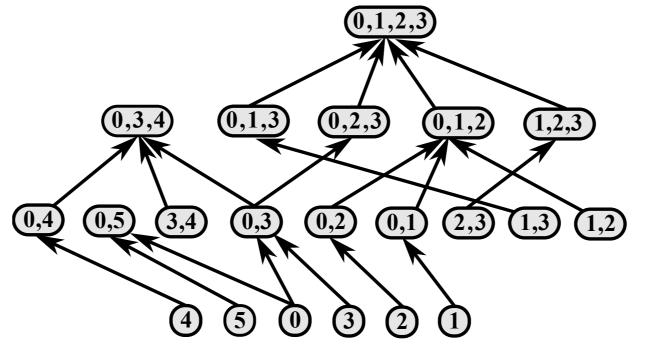

 \blacktriangleright Represented as (*t*,*i*,*p*,*j*), where *i* is the unique identifier of γ' , and *j* is the unique identifier of γ as *p*-face of γ' .

> Not unique and independent of any specific enumeration of faces and top cells.

Suitable for *high dimensions* (always four values) unlike their *explicit representation*.


> Make topological queries *3X faster* in the IA* data structure, Canino et all., 2011, wrt the IS data structure, De Floriani et all., 2010.

Example #1: IS data structure

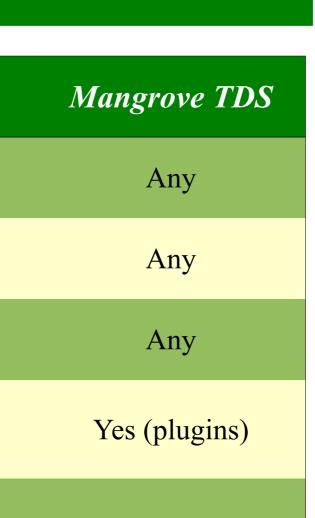


For *each p*-cell γ:

> boundary relation $R_{p,p-1}(\gamma)$, formed by (p-1)-faces of γ ;

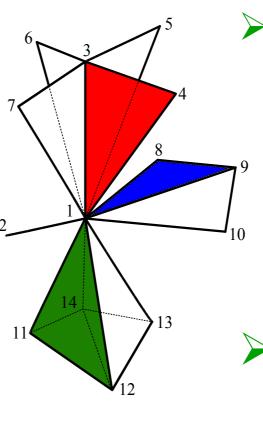
> partial co-boundary relation $R^*_{p,p+1}(\gamma)$, formed by one *arbitrary* (*p*+1)-cell for each component in the link of γ .

	OpenMesh	OpenVolumeMesh	VCGLib	CGAL
Complexes	Cell	Cell	Simplicial	Any
ension of mplexes	Up to 2	Up to 3	Up to 3	Any
nternal esentation	Incidence-based	Incidence-based	Adjacency-based	Several
lexible esentation	No	No	No	Yes (modules)
ation of Non- l Singularities	Only at vertices	Not efficient	Complete	Complete

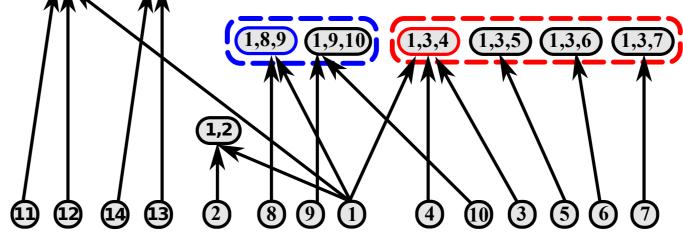

Leila DE FLORIANI – deflo@disi.unige.it

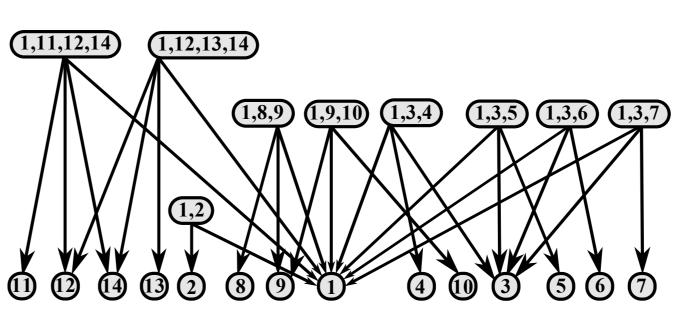
Department of Computer Science, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy

Abstract simplicial and *cell complexes* of any dimension.


Encodes *all* cells.

Efficient


Example #2: IA* data structure


- Abstract simplicial and a specific class of *cell* complexes (e.g., quad and hex meshes) of any dimension.
- Encodes *vertices* and *top* cells in a complex.

For each vertex *v*:

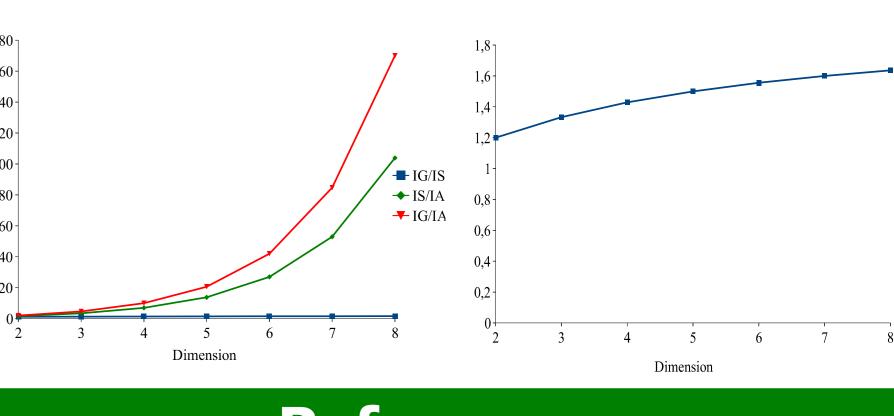
> partial co-boundary relation $R^*_{0,p}(v)$, formed by one *arbitrary top p-cell* for each (*p-1*)-connected component in the star of *v*.

- For *each* top *p*-cell γ :
- > boundary relation $R_{p,0}(\gamma)$, formed by *vertices* on the boundary of γ ;

- > adjacency relation $R^*_{p,p}(\gamma)$, formed by *top p-cells* adjacent to γ (if p>1).
- > *Compact encoding* of $R^*_{p,p}(\gamma)$ through relation $R^*_{p-1,p}(\tau)$, formed by all top *p*-cells incident at a (p-1)-face τ of γ :
 - if τ is on the boundary of *more than two* top *p*-cells, then $R^*_{p-l,p}(\tau)$ is stored once and $R^*_{n,p}(\gamma) = R^*_{p-1,p}(\tau)$.

1,11,12,14 (1,12,13,14)

 $(1,8,9) \leftarrow (1,9,10)$ (1,3,4) (1,3,5) (1,3,6) (1,3,7)


Implementation

- > The *Mangrove TDS Library* is a C++ tool containing the complete *implementations* of our framework, and of six data structures, including the IS and IA* data structures.
- > Based on *templated programming* techniques and completely *platform-independent*.
- > Exploits an *array-based* storage with *safe iterators* and *garbage collector* mechanism for each collection of cells.
- > Possibility of *dynamically associate* any type of information (*properties*) with cells, also with *ghost entities*.
- > **Publicly released** under GPL3, visit:

http://mangrovetds.sourceforge.net

Current and Future Work

- > *Editing operators* on simplicial and cell complexes, e.g., *homology preserving* and *modifying operators*, like stellar operators and those in *Comic et all.*, 2013.
- > Applications in *high dimensions*, since the IA* data structure may be *very compact*.

References

[Can12] CANINO D., Tools for Modeling and Analysis of Non-Manifold Shapes, PhD. Thesis, DISI, Genova, Italy (2012)

[CDFI13] COMIC L., DE FLORIANI L., IURICICH F., Multiresolution Cell Complexes based on Homology-Preserving Euler Operators, Discrete Geometry for Computer Imagery, Springer, (2013)

[CDFW11] CANINO D., DE FLORIANI L., WEISS K., IA*: an Adjacency-ba sed Representation for Non-Manifold Simplicial Shapes in Arbitrary Dimensions, Computer & Graphics - SMI special issue (2011)

[DFHPC10] DE FLORIANI L., HUI A., PANOZZO D., CANINO D., A Dimension-Independent Data Structure for Simplicial Complexes, Proceedings of the 19th International Meshing Roundtable, Springer (2010)

Funded by Italian Ministry of Education and Research under the PRIN 2009 Program and by National Science Foundation under grant number IIS-1116747.