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Problem 

References

OpenMesh OpenVolumeMesh VCGLib CGAL Mangrove TDS

Type of Complexes Cell Cell Simplicial Any Simplicial

Dimension of 
Complexes Up to 2 Up to 3 Up to 3 Any Any

Internal 
Representation Incidence-based Incidence-based Adjacency-based Several Any

Flexible 
Representation No No No Yes (modules) Yes (plugins)

Key Idea

  The Mangrove TDS Library is a C++ tool, which       
      contains the complete implementation of our              
      framework, plus of six data structures, including the   
      IS and the IA* data structures.

   It is based on templated programming techniques, 
 and is completely multi-platform.

   It exploits an array-based storage with iterators and  
  garbage collector for each collections of simplices.

   It is possible to dynamically associate properties        
      with any simplex, including with ghost simplices.

   It is publicly released under GPL version 3, visit:  
http://mangrovetds.sourceforge.net

   Our tests show that the IS and IA* data structures are 
      effective representations for non-manifolds wrt their  
      storage cost, identification of non-manifold 

 simplices, and efficiency of queries.

The Mangrove Topological Data Structure (Mangrove TDS) framework

Current and Future work
  Extensions of the IS and the IA* data structures for 

 quad and unstructured hexahedral meshes.

   Extensions to cell complexes (the Incidence Graph is 
      already in the Mangrove TDS Library [Can12]).

   Editing operators on simplicial and cell complexes:   
      homology preserving and modifying operators.

Implementation

Mangroves

Ghost Simplices

Example #1: IS data structure
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 We propose the Mangrove Topological Data Structure (Mangrove TDS) framework:

 fast prototyping of topological data structures for simplicial complexes, described as mangroves;

 implicit representations of simplices, not encoded in a mangrove, called ghost simplices;

 completely satisfies all the design choices proposed in [SB11].

  Graph-based representations of data structures:

  nodes correspond to simplices, encoded directly in  
  any data structure (possibly not all the simplices);

  arcs correspond to topological relations, restricted  
  to the subset of simplices directly encoded.

  They can represent any topological data structure, also 
     for non-manifolds, without restrictions wrt their 

dimension and the embedding Euclidean space.

  They can be easily customized for any modeling need, 
 and dynamically loaded (plugin).

  They can encode either all the simplices (global), or 
only a subset (restricted).

  A p-simplex σ may be either any top p-simplex, or a      
     p-face of any top k-simplex σ’, and is represented as a   
     4-tuple (k,i,p,j), where i is the unique identifier of σ’,     
     and j is the unique identifier of σ as a p-face of σ’.

  Suitable to represent simplices in high dimensions        
  (always four values), instead of a variable list of            
     vertices (explicit representation of a simplex).

  Make queries 3X faster for any restricted mangrove, 
 e.g., the IA* data structure [CDFW11], wrt any global 
mangrove, e.g., the IS data structure [DFHPC10]

For each p-simplex σ:

  boundary relation Rp,p-1(σ), formed by      

     (p-1)-simplices on the boundary of σ;

  

R
2,1

(0,3,4)={(0,4);(0,3);(3,4)}

  partial co-boundary relation R*p,p+1(σ),    

     formed by one arbitrary (p+1)-simplex   
     for each component in the link of σ.

R*
0,1

(0)={(0,3);(0,5)}

  Need to represent simplicial shapes of any dimension   
    and with a complex topology:

  retrieving topological information;

  identifying non-manifold singularities.

Example #2: IA* data structure

  Represents abstract 
simplicial complexes 
of any dimension.

  Encodes all simplices.

  Represents abstract   
     simplicial complexes  
     of any dimension.

  Encodes vertices and 
 top simplices.

For each vertex v:

  partial co-boundary relation R*
0,p

(v): one 

arbitrary top p-simplex for each (p-1)-
connected component in the star of v.

R*
0,1

(1)={(1,2)} - R*
0,2

(1)={(1,3,4);(1,8,9)} 

R*
0,3

(1)={(1,11,12,14)}

For each top p-simplex σ:

   boundary relation Rp,0(σ), formed by p+1      

      vertices on the boundary of σ;

  



R
1,0

(1,2)={1,2} - R
2,0

(1,3,4)={1,3,4}, R
2,0

(1,8,9)={1,8,9}        

R
3,0

(1,11,12,14)={1,11,12,14}

   adjacency relation R*
p,p

(σ), if p>1, formed

  by the top p-simplices adjacent to σ.
 
Adjacency relation R*

p,p
(σ) along a (p-1)-face τ 

of σ can be simplified through relation R*
p-1,p

(τ), 

formed by top p-simplices incident at τ:

 if τ is on the boundary of more than two         
   top p-simplices, then R*

p-1,p
(τ) is stored only 

once (non-manifold adjacency);

  otherwise, a top p-simplex, adjacent to σ, is  
stored (manifold adjacency).

Manifold adjacency along edge (1,9) and triangle (1,12,14).

Non-manifold adjacency along edge (1,3).

  Several data structures have been developed in the     
   literature [DFH05], also for non-manifolds, but they    
   are optimized and restricted to a specific task.

  A common framework for their  fast prototyping is     
   currently lacking, but it would be interesting and     
   suitable for many applications.



  A framework for this task must satisfy (at least) the     
  following design choices [SB11]:

  flexibility: common representation of any data          
  structure, which can be dynamically replaced and     
  customized at run-time, if necessary (plugins);

  efficiency: exploit and choose the most suitable        
  representation wrt any application need:

  time efficiency for topological queries and      
   restricted storage cost;

  expressive power wrt encoded information;

  easy-to-use: hide internal details and require a short 
  learning curve wrt other tools in the literature.

   Most of other tools exploit a fixed representation, which          
    cannot be easily replaced, thus they are not flexible.

   The internal representations of some tools are equivalent to   
    the Incidence Graph [Ede87] and to the Half-Edge (HE) data  
    structure [Man88] (see [Can12] for a complete analysis).

   The HE data structure and its 3D extensions are restricted to   
    the representations of manifolds.

   The Incidence Graph exhibits a large overhead for manifolds, 
    and does not allow for the efficient identification of non-        
    manifold simplices [DFH05].

Comparisons with other tools
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