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Abstract
Nowadays, gigantic models can be easily produced in many applications and their dimension often exceeds the
RAM size in a common workstation. Thus, using an external memory technique is mandatory in this case. In this
paper, we define a dimension-independent and extensible framework, called Objects Management in Secondary
Memory (OMSM), for managing huge models. The OMSM framework can be easily adapted to the users needs
through dynamic plugins, providing many techniques to be integrated in a storing architecture.

Categories and Subject Descriptors (according to ACM CCS): H.3.1 [Information Systems]: Information Storage and
Retrieval—Content Analysis and Indexing

1. Introduction

Nowadays, huge models can be easily produced in many ap-
plications, for example by the 3D analysis of brain [ABA06].
The dimension of such models can often exceed the RAM
size and, thus, their management has prohibitive costs, even
for high-performance graphics workstations. Moreover, it is
important to encode geometric models in the most efficient
way as possible, maintaining the opportunity to apply edit-
ing operators in order to improve their quality [BEG94] or
to visualize them. Increasing the RAM size could be a triv-
ial solution, since its cost is going sharply down. But estab-
lishing the correct amount of RAM is difficult, since models
dimension is variable.

Simplification techniques could be a reasonable solution
for this problem, since they reduce models size through local
updates. Unfortunately, obtaining the optimal simplification
of a model is known to be a NP-hard problem [AS94]. Many
heuristic methods to simplify a geometric model have been
developed [LRC∗02]. Such techniques are also suitable to
construct a multiresolution model [DDFM∗06], i.e. a model
with the capability of providing representations of a object
at different levels of accuracy.

Unfortunately, also these techniques have high RAM re-
quirements and they cannot be efficiently used with a huge
model. Thus, using an out-of-core technique is mandatory:
we maintain the entire model in external memory (EM) and

we dinamically load in RAM only portions small enough
to be processed in-core. Hence, we remove limits over the
model size. However, we remark an EM access is slower
than an access in RAM: if an efficient control of accesses
is not performed, then I/O performance can be degraded. In
literature, many EM techniques have been designed, e.g. the
EM visualization [SCESL02,CBPS06] and the EM simplifi-
cation [Hop98, Pri00, CMRS03, VCL∗07].

In this paper, we introduce the Objects Management in
Secondary Memory (OMSM) framework in order to man-
age huge geometric models. The OMSM framework can be
easily adapted to the users needs through dynamic plugins,
integrating many techniques.

The remainder of this document is organized as follows.
In Sect. 2, we review basic notions about the spatial indexing
techniques, while in Sect. 3, we propose the requirements to
be satisfied by an extensible storing architecture. In Sect. 4,
we propose a complete description of the OMSM frame-
work. Finally, we discuss its possible extensions in Sect. 5.

2. Spatial Indexing Techniques

Emerging database applications may need a large variety of
data being supported, in general multidimensional data, i.e.
points representing locations in a high-dimensional space. In
this paper, we consider as input unstructured collections of
geometric objects embedded in the same Euclidean space,
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i.e. the spatial objects. In order to efficiently access and up-
date spatial objects, we need new access structures beyond
the B-tree [BMC72] and thus we must introduce spatial in-
dexing indices. Such structures provide an efficient data or-
ganization, related to sorting. In literature, many spatial in-
dexing structures have been developed [Sam06].

In this paper, we focus our attention on a particular class
of indices, called space partitioning trees. Such structures
recursively decompose the input model domain into disjoint
and not overlapped regions, called buckets. We call leaf a
bucket that is not subdivided, while we call internal bucket a
bucket that is subdivided. The most suitable representations
for such structures is the multi-way tree of order m, i.e. trees
where each node has at most m children. In such trees, we
can recognize leaves, i.e. nodes without children, and inter-
nal nodes, i.e. nodes with m children (at most). In our con-
text, each node recursively describes a bucket of the input
domain decomposition. In particular, the root node describes
the input model domain, while an internal node n describes
an internal bucket bn. As consequence, the children of n re-
cursively describe all the buckets in the decomposition of bn
and m must be the maximum number of subdivisions for an
internal bucket. Moreover, a leaf node of a multiway tree de-
scribes a leaf bucket, since it has not any children. Usually,
data are contained only in leaves.

3. Requirements for a Storing Architecture

In this section, we propose requirements to be satisfied by a
generic storing architecture for geometric models. Our target
is to design a generic and extensible framework for describ-
ing storing architectures. Unfortunately, few generic frame-
works for spatial indices have been proposed.

For example, we can mention the eXtensible and fleXi-
ble Library (XXL Library) [vdBBD∗01]. It supports a large
variety of advanced spatial queries by generalizing an in-
cremental best-first search query strategy. Unfortunately, its
querying interfaces are index-specific, thus, if we define cus-
tom queries, then we must modify all the affected index-
ing structures. The XXL Library does not decouple index-
ing structures from storage systems and thus it is not easily
extensible and customizable.

The Generalized Search Tree (GiST) [HNP95] is an other
framework relevant for our research. It generalizes a height-
balanced and single-rooted search tree with variable fanout.
Each node consists of a set of predicate/pointer pairs: the
pointers are used to link a node with its children, while the
predicates are the user-defined data types stored in the tree.
The user must implement some methods, used internally to
control the tree behaviour and to simulate the required index.
The GiST does not support the space partitioning trees. This
project is not supported anymore and the currently available
implementation does not work on recent platforms.

The Space-Partitioning GiST (SP-GiST) [AI01] is a GiST

extension. It describes a generalized indexing structure with
different behavioral properties, including space partitioning
indices. The currently available implementation works only
with the PostgreSQL database server [Psq96, EEA06] and it
supports only bidimensional data.

Thus, the design of storing architectures for spatial objects
should consider these three aspects:

• a spatial index for improving the operations performance:
in our case, we must apply a space partitioning index.

• the subdivision of spatial indexing nodes into clusters. A
cluster is a set of nodes, considered as an atomic unit ac-
cording to a nodes clustering policy: in this context, an I/O
operation is performed on a cluster. Thus, we can group
nodes in order to minimize the number of EM accesses:
for example, a cluster can contain a single node, but this
clustering policy is not optimal [DSS96].

• the dynamic management of clusters among a storage sup-
port and RAM. Clusters must be efficiently written and
read from a storage support, e.g. on a XML file or inside
an embedded database [Bdb06].

Moreover, a storing architecture should be able to to manage
a large variety of spatial objects. Many techniques have been
developed in order to resolve the above problems and, thus,
we should choose the most suitable ones for our applica-
tion. Unfortunately, storing architectures, currently available
in literature, provide a-priori choices for each of the above
aspects, e.g. the GiST framework allows to customize index-
ing structures and it manages only a local database. Thus,
such frameworks are not extensible and they cannot be eas-
ily adapted to the users needs: in this case, users must adapt
themselves to what the storing architecture offers. However,
the three above requirements are independent from each
other, e.g. we can design a clustering policy discarding the
type of spatial index we are using or we can transfer a cluster
on a storage support discarding its internal structure.

These issues drive our desire for a common, unifying and
extensible framework to describe a storing architecture. This
framework should provide an effortless way to customize
each capability of a storing architecture (i.e. the space parti-
tioning tree, the clustering policy and the storage support to
be used). Each technique has specific advantages and disad-
vantages, making it suitable for different applications. Thus,
selecting a technique for each capability allows to adapt the
storing architecture to any users needs. We can reach this
goal by adopting a common programming interface in or-
der to efficiently integrate a wide range of techniques. This
design allows the abstraction of dynamic software compo-
nents (one for each of the above aspects) in accordance with
the Interface design pattern [GHJV95]. This solution should
be also applied for spatial objects. Interfaces control not only
what functionality an implementation will have, but also dic-
tate how interaction will occur via the offered services. This
allows software components to communicate in precisely the
same fashion regardless of what implementation a software
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component is using. Moreover, this design allows to remove
an instance of a component and to replace it with another one
implementing the same interface, even at run-time. In other
words, we need a dynamic plugins system, in accordance
with the Dynamic Linkage design pattern [GHJV95, SB98].
Each plugin can be shared with other researchers and tried
out with its own implementations in novel ways not neces-
sarily thought by the original author. Moreover, this design
choice should help developers to promote reusability, easier
maintenance and code familiarity.

4. An Extensible Storing Architecture

In this section, we introduce the Objects Management in Sec-
ondary Memory (OMSM) framework, satisfying all the re-
quirements described in Sect. 3.

This framework manages a huge set of spatial objects with
different topological properties, but embedded in the same
Euclidean space. In Sect. 4.1, we describe the spatial objects
management in the OMSM framework. Our framework has
a layered structure, as depicted in Fig. 1. Each layer is called
OMSM layer and it is targeted to manage one of the three
aspects introduced in Sect. 3:

• the SPDataIndex layer, where users can choose the space
partitioning tree to be used: in Sect. 4.2 we give a precise
description of this layer.

• the NodeHandler layer, where it is possible to choose how
nodes of the spatial indexing tree must be grouped accord-
ing to a clustering policy. In Sect. 4.3, we give a precise
description of this layer.

• the NClusterStorager layer, where it is possible to choose
how clusters must be transferred between RAM and a par-
ticular storage support (i.e. a hard-disk). In Sect. 4.4. we
give a precise description of this layer.

Figure 1: the layered organization of the OMSM framework.

Within each layer, an entity implements its functionalities,
described by an interface. Each entity interacts only with the

layer immediately beneath and provides facilities to the layer
above it through services offered by its interfaces. Moreover,
data encapsulation is used in each layer in order to abstract
its data model. Thus, each layer works on a view of the data
to be managed, by discarding not useful content. In this way,
each layer is independent from the other one, satisfying the
Interface design pattern. This communication schema allows
also to replace an entity with an other one implementing the
same interface, without messing the entire architecture and
satisfying the Dynamic Linkage design pattern.

4.1. The OMSM spatial objects

One of the most important problems in a storing architecture
(as in the OMSM framework) is the data persistence. In our
case, we are also interested in indexing and in extracting ge-
ometric properties from spatial objects. Thus, we decouple
persistence properties from the spatial ones in order to ob-
tain an extensible system in the same spirit of the OMSM
framework. We apply a solution based on interfaces hierar-
chy: each interface offers a set of services and the user can
write a custom extension, satisfying such interfaces.

The first step is the definition of an interface common to
all the objects to be stored in the OMSM framework. In or-
der to reach our goal, we have designed a persistence sys-
tem based on the representation of an object through a bytes
sequence, maintained in little-endian order. Each object O
has an internal state, composed by internal fields. The bytes
sequence describing O can be obtained by recursively con-
catenating descriptions of the internal fields. Such bytes se-
quence must be provided (in content and in format) by the
user inside a plugin. This persistence system is described by
the RawData interface, offering the services:

• bytes_sequence getBytes();
• int getBytesNumber().

The getBytes() service returns the bytes sequence describing
an object O, while the getBytesNumber() service returns its
length, expressed in bytes.

In the OMSM framework it is also possible to store and to
query spatial objects. Given a spatial object S, then it must
be possible:

• to extract geometric properties of S (e.g. its vertices);
• to compare S with an other spatial object;
• to extract the dimension d of the Euclidean space where
S is embedded;

• to extract the d-dimensional representative point of S, i.e.
a point used as unique identifier of S inside a space parti-
tioning tree (see Sect. 4.2).

In order to describe a spatial object, we extend the RawData
interface, introducing the OmsmSpatialObject one. Also in
this case, we assume to have a custom definition of a spa-
tial object (usually application-dependent): at the mean time,
we can have a collection formed by different types of spatial
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objects. The representative point definition follows the same
approach: one of most common candidates is the spatial ob-
ject baricentre, but it is not the unique choice.

In addition to the services offered by the RawData inter-
face, the OmsmSpatialObject interface offers the following
services:

• int getSpaceDimension();
• Point getRepresentativePoint();
• list<Point> getEuclideanVertices();
• bool sameObject(OmsmSpatialObject o).

Let S be a spatial object, i.e. an instance of the OmsmSpa-
tialObject interface. The getSpaceDimension() service re-
turns the dimension d (usually d = 3) of the Euclidean space
where S is embedded. The getRepresentativePoint() service
returns the d-dimensional representative point of S, while
the getEuclideanVertices() returns all the vertices of S. Fi-
nally, the sameObject() service compares the input object S
with an other spatial object o, checking if they are equal.

4.2. The SPDataIndex layer

The SPDataIndex layer allows users to interact with the data
stored in the OMSM framework, hiding the implementative
details. The main objective of this layer is to efficiently man-
age a huge set of spatial objects, described as instances of
the OmsmSpatialObject interface (see Sect. 4.1) and to pro-
vide a custom implementation of a space partitioning tree. In
other words, this layer describes a component that receives
some instances of the OmsmSpatialObject interface (i.e. the
spatial objects to be managed) as input and produces the cor-
responding space partitioning tree as output. All the output
nodes must be sent to the NodeHandler layer (see Sect. 4.3)
in order to update clusters.

These goals are obtained providing a suitable data model
that allows to discard all the implementative details. In this
layer, the data model is a generic node of a space parti-
tioning tree, described by the OmsmSpatialIndexNode in-
terface. This node contains one or more spatial objects, in-
dexed through a representative point (or a linear combina-
tion of each representative point). In other words, a spatial
object is stored in the node where its representative point is
stored. In this way, all the spatial objects can be represented
through their representative points, reducing their complex-
ity. This design choice is transparent for the other OMSM
layers. Since instances of the OmsmSpatialIndexNode inter-
face must be stored in the OMSM framework, this interface
must extend the RawData one in order to guarantee persis-
tence. In order to hide the specific spatial index we are cur-
rently using, the OmsmSpatialIndexNode interface must also
extend the Node interface (abstracting a generic node in the
structure), as depicted in Fig. 2. In Sect. 4.3, we give a de-
tailed motivation of this design choice.

In addition to the services offered by the RawData inter-

face, the OmsmSpatialIndexNode interface offers the follow-
ing services:

• void addSpatialObject(OmsmSpatialObject o, int lev);
• void removeSpatialObject(OmsmSpatialObject o, int lev);
• bool searchSpatialObject(OmsmSpatialObject o, int lev);
• list<OmsmSpatialObject> getObjects();
• bool isLeaf().

Let N be a node of a spatial index, described by an instance
of the OmsmSpatialIndexNode interface. The addSpatialOb-
ject() service adds a spatial object o in N , located at level
lev. The removeSpatialObject() service removes the spatial
object o from N , located at level lev, while the searchSpa-
tialObject() service looks for the spatial object o in N (and
recursively in its children, if they exist), located at level lev.
Finally, the getObjects() service returns all the objects stored
in N , while the isLeaf() service checks if N is a leaf.

In order to minimize memory requirements, we maintain
in RAM only the root node of the space partitioning tree,
while the other nodes are dynamically loaded from the Node-
Handler layer (see Sect. 4.3). However, this design choice is
a bootleneck and we are investigating about it.

We stated that the SPDataIndex layer is the most external
layer in the OMSM framework and users interact with our
storing architecture through this layer. We intend to provide
a general system not optimized and tailored to a specific ap-
plication. Thus, the SPDataIndex layer must offer (at least)
this limited set of services:

• void open(string dbname, bool createOn, bool rdOnly);
• void close();
• void addSpatialObject(OmsmSpatialObject o).

The open() service connects the current instance of the
OMSM framework with a data source, whose name is con-
tained in the dbname string. In this service, the boolean flag
createOn is used for enabling the construction of a new data
source, while the rdonly flag is useful for blocking updates
of the required data source. The close() service disconnects
the current instance of the OMSM framework from its data
source. Finally, the addSpatialObject() service stores a spa-
tial object o in the current instance of the OMSM framework.

4.3. The NodeHandler layer

The NodeHandler layer groups nodes of a spatial index into
clusters in order to improve the I/O bandwith. We recall that
a cluster is a set of nodes, considered as an atomic unit: an
I/O operation, delegated to the NClusterStorager layer (see
Sect. 4.4), must be performed on a single cluster. The goal of
this operation is to provide a compromise between the high
latency of EM accesses and the amount of data being trans-
ferred on a storage support. Moreover, we should understand
what nodes could be useful in the future, avoiding an EM ac-
cess. A cluster can contain only one node, but this clustering
policy is not optimal [DSS96]. In this case, we have a lot of
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high latency operations and each of them transfers only one
node. Thus, each future operation will require a new EM ac-
cess. This aspect is very critical in a storing architecture and
efficient clustering policies must be designed.

We need a special structure, equivalent to a super-block in
a filesystem, containing information about the current con-
figuration of the OMSM framework. It is described by the
SuperNode interface and, for the sake of simplicity, it is con-
sidered equivalent to a generic node of a spatial index.Thus,
the data model of the NodeHandler layer is either an instance
of the OmsmSpatialIndexNode or the unique instance of the
SuperNode. Thus, we need a generic interface, called Node,
in order to hide implementative details between the above
interfaces. As consequence, the NodeHandler layer manages
only instances of the Node interface. Instances of such inter-
face must be persistent and, thus, it must extend the Raw-
Data interface (see Sect. 4.1), as depicted in Fig. 2.

Figure 2: the inheritance relation between interfaces de-
scribing the nodes types in the OMSM framework.

Now, we can analyze the most important services offered by
the NodeHandler layer:

• void addNode(node_id nid, Node n);
• bool removeNode(node_id nid);
• bool searchNode(node_id nid);
• Node getNode(node_id nid).

The addNode() service adds the node n with nid as identifier
in a cluster of the current subdivision. The removeNode() and
the searchNode() services respectively removes and looks
for a node with nid as identifier in the current subdivision.
Finally, the getNode() service loads a node with nid as iden-
tifier from the current subdivision in clusters.

4.4. The NClusterStorager layer

The NClusterStorager layer manages low-level representa-
tions of nodes clusters to be written or read from a storage
support. The particular type of storage support is hidden by
the current layer interface: for example, we can access a re-
mote database or write each cluster on an independent file,
through its interface. In the NClusterStorager layer, the data

model is a pair (id,ba), where id is the unique identifier for
the cluster c of interest, while ba is the sequence of bytes de-
scribing the cluster c. We recall that a cluster is an object that
can be stored in the OMSM framework, i.e. a subclass of the
RawData interface. Thus, we can extract its representation
in a straightforward way, by invoking the getBytes() service
(see Sect. 4.1).

Now, we can analyze the most important services offered
by theNClusterStorager layer:

• void addCluster(cluster_id cid, byte_sequence ba, int lg);
• bool removeCluster(cluster_id cid);
• bool searchCluster(cluster_id cid);
• void getCluster(cluster_id cid, byte_sequence ba, int lg).

The addCluster() service adds a cluster in the storage sup-
port: the input cluster has cid as identifier and it is described
by the bytes sequene ba, composed by lg bytes. The re-
moveCluster() and the getCluster() services respectively re-
moves and looks for the cluster with cid as identifier from
the storage support. Finally, the getCluster() service loads
the cluster with cid as identifier from the storage support: if
this cluster exists, then its representation (composed by lg
bytes) will be contained in the bytes sequence ba, otherwise
the output parameters will be undefined.

5. Concluding remarks and future extensions

In this paper, we have proposed the Objects Management in
Secondary Memory (OMSM) framework for managing huge
geometric models. It can be easily adapted to the user needs
through dynamic plugins, providing many techniques to be
integrated in a storing architecture. Thus, a new technique
can be made available without messing with all the structure,
by writing an appropriate extension for this framework. Our
work is orthogonal to the currently available libraries: such
frameworks address the implementation issues behind new
methods by removing the burden of writing structural main-
tenance code from the developer point of view. The OMSM
framework aims to simplify applications development: em-
ploying the OMSM framework requires to implement plug-
ins compliant to a concise set of interfaces. Existing libraries
can be used for simplifying the client code development as
well, but they are not targeted primarily to be extensible and
they do not promote transparent use of different techniques.

Thanks to its extensible structure, the OMSM framework
can be extended in many directions and it is suitable to per-
form operations on geometric models no matter what mod-
eling primitives or spatial data structures are used in the
plugins. An important extension of this framework is the
management of simplicial or cell complexes [Ago05]. Such
structures are usually described by a topological data struc-
ture and thus we can offer an unique platform in order to
describe an EM version of a topological data structure. As
result, we decouple storage aspects from the combinatorial
description of a complex, obtaining a solution more general
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than the technique described in [DFFMD08]. With this im-
provement, the OMSM framework will become a very gen-
eral structure, capable of performing most spatial and topo-
logical queries on geometric models.

Performance of storing architectures for repeated insert-
ing operations could not be satisfactory, when inserting a
large amount of data. To overcome this drawback, a tech-
nique of bulk construction for EM data (and in particular an
EM topological data structure) is needed. With such tech-
nique, we can obtain a better storage utilization and better
query answering performance. Another related problem is
bulk insertion. In contrast to bulk loading (where an index
is built from scratch), such technique aims to update an ex-
isting structure with a large set of data. We are investigating
about these problems and we are looking for a general solu-
tion, in the same spirit of the OMSM framework.
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